Patents by Inventor Wilhelmus Reinerius Maria Mens

Wilhelmus Reinerius Maria Mens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9588196
    Abstract: The invention relates to a multi-channel (e.g. quadrature) MRI transmit system in which RF power amplifiers having different power capabilities are used in different transmit channels. This results in reduced system costs, due to the avoidance of an unused excess of RF power capability when the power demand for obtaining a homogeneous B1-field (RF shimming) is asymmetric and the asymmetry is qualitatively the same for different imaging applications. The multi-channel transmit unit may also comprise a commutator which enables to selectively connect each RF power amplifier to each drive port of transmit coil arrangement (e.g. a birdcage coil).
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: March 7, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Royston Harvey, Wilhelmus Reinerius Maria Mens
  • Patent number: 9535142
    Abstract: An RF volume resonator system is disclosed comprising a multi-port RF volume resonator (40, 50; 60), like e.g. a TEM volume coil or TEM resonator, or a birdcage coil, all of those especially in the form of a local coil like a head coil, or a whole body coil, and a plurality of transmit and/or receive channels (T/RCh1, . . . T/RCh8) for operating the multi-port RF volume resonator for transmitting RF excitation signals and/or for receiving MR relaxation signals into/from an examination object or a part thereof. By the individual selection of each port (P1, . . . P8) and the appropriate amplitude and/or frequency and/or phase and/or pulse shapes of the RF transmit signals according to the physical properties of an examination object, a resonant RF mode within the examination object with an improved homogeneity can be excited by the RF resonator.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 3, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Leussler, Christian Findeklee, Wilhelmus Reinerius Maria Mens
  • Patent number: 8941380
    Abstract: In a method and apparatus to enable increased RF duty cycle in high field MR scans, a specific energy absorption rate (SAR) calculation processor calculates the local and global SAR or even a spatial SAR map. By incorporating additional information as, e.g. patient position, the SAR calculation accuracy can be increased as well as by using more patient specific pre-calculated information (e.g. based on different bio meshes), the so called Q-matrices. A sequence controller maybe provided to create a global SAR optimal RF pulse. After the optimal RF pulse is applied, the SAR and its spatial distribution are determined. SAR hotspots are also determined. Q-matrices within an appropriate radius around the hotspots are averaged and added to a global Q-matrix in a weighted fashion. After the global Q-matrix is updated, a new optimal RF pulse is created.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: January 27, 2015
    Assignee: Koninkijke Philips N.V.
    Inventors: Ingmar Graesslin, Sven Biederer, Ulrich Katscher, Ferdinand Schweser, Peter Boernert, Paul Royston Harvey, Wilhelmus Reinerius Maria Mens
  • Publication number: 20140055136
    Abstract: Abstract: An RF volume resonator system is disclosed comprising a multi-port RF volume resonator (40, 50; 60), like e.g. a TEM volume coil or TEM resonator, or a birdcage coil, all of those especially in the form of a local coil like a head coil, or a whole body coil, and a plurality of transmit and/or receive channels (T/RCh1, . . . T/RCh8) for operating the multi-port RF volume resonator for transmitting RF excitation signals and/or for receiving MR relaxation signals into/from an examination object or a part thereof. By the individual selection of each port (P1, . . . P8) and the appropriate amplitude and/or frequency and/or phase and/or pulse shapes of the RF transmit signals according to the physical properties of an examination object, a resonant RF mode within the examination object with an improved homogeneity can be excited by the RF resonator.
    Type: Application
    Filed: April 13, 2012
    Publication date: February 27, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Leussler, Christian Findeklee, Wilhelmus Reinerius Maria Mens
  • Publication number: 20130300415
    Abstract: The invention relates to a multi-channel (e.g. quadrature) MRI transmit system in which RF power amplifiers having different power capabilities are used in different transmit channels. This results in reduced system costs, due to the avoidance of an unused excess of RF power capability when the power demand for obtaining a homogeneous B1-field (RF shimming) is asymmetric and the asymmetry is qualitatively the same for different imaging applications. The multi-channel transmit unit may also comprise a commutator which enables to selectively connect each RF power amplifier to each drive port of transmit coil arrangement (e.g. a birdcage coil).
    Type: Application
    Filed: December 27, 2011
    Publication date: November 14, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Paul Royston Harvey, Wilhelmus Reinerius Maria Mens
  • Publication number: 20110043205
    Abstract: In a method and apparatus to enable increased RF duty cycle in high field MR scans, a specific energy absorption rate (SAR) calculation processor (36) calculates the local and global SAR or even a spatial SAR map. The efficient implementation by using pre-averaged data (based on E-fields) makes a fast and accurate SAR estimation possible. By incorporating additional information as e.g. patient position the SAR calculation accuracy can be increased as well as by using more patient specific precalculated information (e.g. based on different bio meshes), the so called Q-matrices. Optionally, a sequence controller (24) creates a global SAR optimal RF pulse. After the optimal RF pulse is applied, the SAR and its spatial distribution are determined. SAR hotspots are also determined. Q-matrices within an appropriate radius around the hotspots are averaged and added to a global Q-matrix in a weighted fashion. After the global Q-matrix is updated, a new optimal RF pulse is created.
    Type: Application
    Filed: April 13, 2009
    Publication date: February 24, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ingmar Graesslin, Sven Biederer, Ulrich Katscher, Ferdinand Schweser, Peter Boernert, Paul Royston Harvey, Wilhelmus Reinerius Maria Mens
  • Patent number: 7372265
    Abstract: A magnetic resonance imaging (MRI) system includes an examination volume (9), a main magnet system (17) for generating a main magnetic field (B0) in the examination volume, a gradient magnet system (25) for generating gradients of the main magnetic field, and a control system (37) for compensating disturbances of the magnetic field caused by mechanical vibrations of the MRI system. The control system is a feed-forward control system which determines a necessary compensation for said disturbances in dependence on an electric current in the gradient magnet system according to a predetermined response relation. Since in most MRI systems the mechanical vibrations are predominantly caused by the altering electric currents in the gradient magnet system and by eddy currents induced thereby, an accurate and reliable compensation for said disturbances is provided, so that artifacts and other distortions of the reconstructed image caused by said disturbances are considerably reduced.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: May 13, 2008
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Cornelis Leonardus Gerardus Ham, Wilhelmus Reinerius Maria Mens, Johannes Petrus Groen
  • Patent number: 7301340
    Abstract: A magnetic resonance imaging system comprises reconstruction unit that is arranged to reconstruct a complex image of complex valued pixels from magnetic resonance signals. A compute a distribution of phase values of the complex image and to apply a phase correction to the complex image to form a corrected magnetic resonance image. The phase correction is controlled on the basis of the distribution of phase values of the complex image. Notably, the histogram power function is an effective indicator of the accuracy of the phase correction.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: November 27, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Wilhelmus Reinerius Maria Mens