Patents by Inventor Wilko Balschun
Wilko Balschun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12154780Abstract: The present invention provides a mass spectrometer comprising a first ion trap, a second ion trap, a lens stack for directing ions from the first ion trap to the second ion trap and a housing. The first ion trap is arranged to form a linear or curved potential well and the second ion trap is an electrostatic ion trap, for example, an orbital ion trap, arranged to form an annular potential well. The mass spectrometer further comprises a unitary insert comprising a first cavity which holds the lens stack and a second cavity which holds the second ion trap, wherein the insert is inserted within the housing.Type: GrantFiled: May 20, 2020Date of Patent: November 26, 2024Assignee: Thermo Fisher Scientific (Bremen) GmbHInventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Aivaras Venckus, Denis Chernyshev, Eduard V. Denisov
-
Publication number: 20240266161Abstract: The present invention provides a method of manufacturing an electrode arrangement that includes mechanically coupling an RF electrode to a dielectric material using a plurality of separators that are spaced apart such that a gap is defined between the RF electrode and the dielectric material, and cutting the RF electrode while the RF electrode is coupled to the dielectric material so as to reshape the RF electrode.Type: ApplicationFiled: April 16, 2024Publication date: August 8, 2024Inventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Denis Chernyshev, Eduard V. Denisov
-
Patent number: 12002671Abstract: The present invention provides an electrode arrangement 10, 10? for an ion trap, ion filter, an ion guide, a reaction cell or an ion analyser. The electrode arrangement 10, 10? comprises an RF electrode 12a, 12b, 12a?, 12b? mechanically coupled to a dielectric material 11. The RF electrode 12a, 12b, 12a?, 12b? is mechanically coupled to the dielectric material 11 by a plurality of separators 13 that are spaced apart and configured to define a gap between the RF electrode 12a, 12b, 12a?, 12b? and the dielectric material 11. Each of the plurality of separators 13 comprises a projecting portion 13b and the dielectric material 11 comprises corresponding receiving portions 11a such that on coupling of the RF electrode 12a, 12b, 12a?, 12b? to the dielectric material 11, the projecting portion 13b of each separator 13 is received within the corresponding receiving portion 11a of the dielectric material 11.Type: GrantFiled: June 2, 2022Date of Patent: June 4, 2024Assignee: Thermo Fisher Scientific (Bremen) GmbHInventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Denis Chernyshev, Eduard V. Denisov
-
Patent number: 11978618Abstract: A component of an ion optical device is manufactured. The component comprises aligned first and second electrode sets. A first material is machined to provide a part-machined first electrode set that comprises the first electrode set attached to a frame part of the first material. A second material is machined to provide a part-machined second electrode set that comprises the second electrode set attached to a frame part of the second material. The component of the ion optical device is assembled by aligning the part-machined first and second electrode sets. Subsequent to aligning the part-machined first and second electrode sets, the part-machined first electrode set is further machined to separate the first electrode set from the frame part of the first material and the part-machined second electrode set is further machined to separate the second electrode set from the frame part of the second material.Type: GrantFiled: December 20, 2021Date of Patent: May 7, 2024Assignee: Thermo Fisher Scientific (Bremen) GmbHInventor: Wilko Balschun
-
Publication number: 20230326734Abstract: An ion mirror for a time of flight mass spectrometer (ToF) is provided. The ion mirror is elongated from a first end to a second end along a drift direction (z) and is configured to reflect ions in a reflection direction (y) orthogonal to the drift direction. The ion mirror comprises a plurality of elongate mirror electrodes and at least one Fringe Field Correcting (FFC) assembly. Each of the elongate mirror electrodes extends in the drift direction. Each of the plurality of elongate mirror electrodes is configured to receive a respective mirror electrode voltage in order to provide an electrostatic field of the ion mirror. The at least one FFC assembly is provided at the first and/or second end of the ion mirror. The FFC assembly comprises a plurality of electrodes, the plurality of electrodes extending in a plane orthogonal to the drift direction, each electrode configured to receive a respective FFC voltage.Type: ApplicationFiled: April 12, 2023Publication date: October 12, 2023Inventors: Dmitry GRINFELD, Hamish STEWART, Christian HOCK, Alexander WAGNER, Wilko BALSCHUN, Alexander MAKAROV
-
Patent number: 11699582Abstract: A coupling for connecting together vacuum-based analytical systems requiring to be vibrationally isolated, comprising: a tubular connector having a longitudinal axis, the connector comprising a first end for connection to a first analytical system and a flexible portion reducing transmission of vibrations and permitting displacement of the first analytical system in a direction transverse to the longitudinal axis of the connector; and a seal longitudinally separated from the flexible portion, for vacuum sealing between the connector and a second analytical system; wherein the connector contains ion optics for transmitting ions between the first and second analytical systems.Type: GrantFiled: September 7, 2021Date of Patent: July 11, 2023Assignees: FEI Company, Thermo Fisher Scientific (Breman) GmbHInventors: Alexander Makarov, Wilko Balschun, Kyle Fort, Kun Liu
-
Publication number: 20220415640Abstract: The present invention relates to an assembly comprising a vacuum chamber and a time-of-flight mass spectrometer wherein the time-of-flight mass spectrometer is contained within the vacuum chamber. The time-of-flight mass spectrometer comprising a first electrode and a second electrode, the second electrode being spaced apart from the first electrode at a distance defining a portion of an ion-flight path therebetween. The assembly further comprising a first support for supporting the first electrode, the first support arranged between an inner surface of the vacuum chamber and the first electrode. The first support is configured to permit relative movement between at least a portion of the inner surface of the vacuum chamber and the first electrode. The inner surface of the vacuum chamber and the first electrode are thermally coupled. The present invention also relates to a multi-reflection time-of-flight mass analyser.Type: ApplicationFiled: June 20, 2022Publication date: December 29, 2022Applicant: Thermo Fisher Scientific (Bremen) GmbHInventors: Christian Hock, Alexander Wagner, Hamish Stewart, Dmitry Grinfeld, Anastassios Giannakopulos, Wilko Balschun, Alexander Makarov
-
Publication number: 20220293409Abstract: The present invention provides an electrode arrangement 10, 10? for an ion trap, ion filter, an ion guide, a reaction cell or an ion analyser. The electrode arrangement 10, 10? comprises an RF electrode 12a, 12b, 12a?, 12b? mechanically coupled to a dielectric material 11. The RF electrode 12a, 12b, 12a?, 12b? is mechanically coupled to the dielectric material 11 by a plurality of separators 13 that are spaced apart and configured to define a gap between the RF electrode 12a, 12b, 12a?, 12b? and the dielectric material 11. Each of the plurality of separators 13 comprises a projecting portion 13b and the dielectric material 11 comprises corresponding receiving portions 11a such that on coupling of the RF electrode 12a, 12b, 12a?, 12b? to the dielectric material 11, the projecting portion 13b of each separator 13 is received within the corresponding receiving portion 11a of the dielectric material 11.Type: ApplicationFiled: June 2, 2022Publication date: September 15, 2022Inventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Denis Chernyshev, Eduard V. Denisov
-
Patent number: 11434913Abstract: A vacuum pump system for evacuating at least five volumes comprising a turbomolecular pump and a forevacuum pump arranged to pump an output of the turbomolecular pump arrangement to atmosphere. The turbomolecular pump has at least five pumping stages separated by rotor blades. Not more than three pumping stages have pumping speeds in excess of ? of the highest pumping speed when under vacuum and/or a pumping port cross section in excess of ? of the highest pumping port cross section, and at least two pumping stages have pumping speeds less than ¼ of the highest pumping speed when under vacuum and/or a pumping port cross section of less than ¼ of the biggest pumping port cross section. The ratio of pressures between the pumping stage with the highest pressure and the pumping stage with the lowest pressure is at least 100000:1 when under vacuum.Type: GrantFiled: August 27, 2019Date of Patent: September 6, 2022Assignee: Thermo Fisher Scientific (Bremen) GmbHInventors: Alexander A. Makarov, Wilko Balschun
-
Patent number: 11387093Abstract: The present invention provides an electrode arrangement 10, 10? for an ion trap, ion filter, an ion guide, a reaction cell or an ion analyser. The electrode arrangement 10, 10? comprises an RF electrode 12a, 12b, 12a?, 12b? mechanically coupled to a dielectric material 11. The RF electrode 12a, 12b, 12a?, 12b? is mechanically coupled to the dielectric material 11 by a plurality of separators 13 that are spaced apart and configured to define a gap between the RF electrode 12a, 12b, 12a?, 12b? and the dielectric material 11. Each of the plurality of separators 13 comprises a projecting portion 13b and the dielectric material 11 comprises corresponding receiving portions 11a such that on coupling of the RF electrode 12a, 12b, 12a?, 12b? to the dielectric material 11, the projecting portion 13b of each separator 13 is received within the corresponding receiving portion 11a of the dielectric material 11.Type: GrantFiled: May 18, 2020Date of Patent: July 12, 2022Assignee: Thermo Fisher Scientific (Bremen) GmbHInventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Denis Chernyshev, Eduard V. Denisov
-
Publication number: 20220199388Abstract: A component of an ion optical device is manufactured. The component comprises aligned first and second electrode sets. A first material is machined to provide a part-machined first electrode set that comprises the first electrode set attached to a frame part of the first material. A second material is machined to provide a part-machined second electrode set that comprises the second electrode set attached to a frame part of the second material. The component of the ion optical device is assembled by aligning the part-machined first and second electrode sets. Subsequent to aligning the part-machined first and second electrode sets, the part-machined first electrode set is further machined to separate the first electrode set from the frame part of the first material and the part-machined second electrode set is further machined to separate the second electrode set from the frame part of the second material.Type: ApplicationFiled: December 20, 2021Publication date: June 23, 2022Applicant: Thermo Fisher Scientific (Bremen) GmbHInventor: Wilko Balschun
-
Publication number: 20220084806Abstract: A coupling for connecting together vacuum-based analytical systems requiring to be vibrationally isolated, comprising: a tubular connector having a longitudinal axis, the connector comprising a first end for connection to a first analytical system and a flexible portion reducing transmission of vibrations and permitting displacement of the first analytical system in a direction transverse to the longitudinal axis of the connector; and a seal longitudinally separated from the flexible portion, for vacuum sealing between the connector and a second analytical system; wherein the connector contains ion optics for transmitting ions between the first and second analytical systems.Type: ApplicationFiled: September 7, 2021Publication date: March 17, 2022Inventors: Alexander Makarov, Wilko Balschun, Kyle Fort, Kun Liu
-
Publication number: 20200388480Abstract: The present invention provides a mass spectrometer comprising a first ion trap, a second ion trap, a lens stack for directing ions from the first ion trap to the second ion trap and a housing. The first ion trap is arranged to form a linear or curved potential well and the second ion trap is an electrostatic ion trap, for example, an orbital ion trap, arranged to form an annular potential well. The mass spectrometer further comprises a unitary insert comprising a first cavity which holds the lens stack and a second cavity which holds the second ion trap, wherein the insert is inserted within the housing.Type: ApplicationFiled: May 20, 2020Publication date: December 10, 2020Inventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Aivaras Venckus, Denis Chernyshev, Eduard V. Denisov
-
Publication number: 20200373138Abstract: The present invention provides an electrode arrangement 10, 10? for an ion trap, ion filter, an ion guide, a reaction cell or an ion analyser. The electrode arrangement 10, 10? comprises an RF electrode 12a, 12b, 12a?, 12b? mechanically coupled to a dielectric material 11 . The RF electrode 12a, 12b, 12a?, 12b? is mechanically coupled to the dielectric material 11 by a plurality of separators 13 that are spaced apart and configured to define a gap between the RF electrode 12a, 12b, 12a?, 12b? and the dielectric material 11. Each of the plurality of separators 13 comprises a projecting portion 13b and the dielectric material 11 comprises corresponding receiving portions 11a such that on coupling of the RF electrode 12a, 12b, 12a?, 12b? to the dielectric material 11, the projecting portion 13b of each separator 13 is received within the corresponding receiving portion 11a of the dielectric material 11.Type: ApplicationFiled: May 18, 2020Publication date: November 26, 2020Inventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Denis Chernyshev, Eduard V. Denisov
-
Patent number: 10748755Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2? radians over an ion detection period Tm.Type: GrantFiled: January 30, 2019Date of Patent: August 18, 2020Assignee: Thermo Fisher Scientific (Bremen) GmbHInventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning
-
Publication number: 20190383294Abstract: A vacuum pump system for evacuating at least five volumes comprising a turbomolecular pump and a forevacuum pump arranged to pump an output of the turbomolecular pump arrangement to atmosphere. The turbomolecular pump has at least five pumping stages separated by rotor blades. Not more than three pumping stages have pumping speeds in excess of ? of the highest pumping speed when under vacuum and/or a pumping port cross section in excess of ? of the highest pumping port cross section, and at least two pumping stages have pumping speeds less than ¼ of the highest pumping speed when under vacuum and/or a pumping port cross section of less than ¼ of the biggest pumping port cross section. The ratio of pressures between the pumping stage with the highest pressure and the pumping stage with the lowest pressure is at least 100000:1 when under vacuum.Type: ApplicationFiled: August 27, 2019Publication date: December 19, 2019Inventors: Alexander A. MAKAROV, Wilko BALSCHUN
-
Patent number: 10422338Abstract: A vacuum pump system for evacuating at least five volumes comprising a turbomolecular pump and a forevacuum pump arranged to pump an output of the turbomolecular pump arrangement to atmosphere. The turbomolecular pump has at least five pumping stages separated by rotor blades. Not more than three pumping stages have pumping speeds in excess of ? of the highest pumping speed when under vacuum and/or a pumping port cross section in excess of ? of the highest pumping port cross section, and at least two pumping stages have pumping speeds less than ¼ of the highest pumping speed when under vacuum and/or a pumping port cross section of less than ¼ of the biggest pumping port cross section. The ratio of pressures between the pumping stage with the highest pressure and the pumping stage with the lowest pressure is at least 100000:1 when under vacuum.Type: GrantFiled: August 13, 2014Date of Patent: September 24, 2019Assignee: Thermo Fisher Scientific (Bremen) GmbHInventors: Alexander Makarov, Wilko Balschun
-
Publication number: 20190164740Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2? radians over an ion detection period Tm.Type: ApplicationFiled: January 30, 2019Publication date: May 30, 2019Inventors: Alexander A. MAKAROV, Eduard V. DENISOV, Gerhard JUNG, Wilko BALSCHUN, Stevan R. HORNING
-
Patent number: 10242860Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.Type: GrantFiled: January 4, 2017Date of Patent: March 26, 2019Assignee: Thermo Fisher Scientifc (Bremen) GmbHInventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning
-
Publication number: 20170117130Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.Type: ApplicationFiled: January 4, 2017Publication date: April 27, 2017Inventors: Alexander A. MAKAROV, Eduard V. DENISOV, Gerhard JUNG, Wilko BALSCHUN, Stevan R. HORNING