Patents by Inventor Will Findlay

Will Findlay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950377
    Abstract: Provided are flexible interconnect circuits comprising signal circuit elements. For example, a signal circuit element can be formed from the same metal sheet as a signal trace, thereby being monolithic with the signal circuit element. This integration of signal circuit elements into a flexible interconnect circuit reduces the number of additional operations and components (e.g., attaching external circuit elements). In some examples, a flexible interconnect circuit is used in a battery pack for interconnecting batteries while providing external terminals on the same side of the pack. Specifically, a flexible interconnect circuit comprises an interconnecting conductive layer (for connecting to batteries) and a return conductive layer, both extending between the first and second circuit edges. Each of these conductive layers comprises a corresponding external terminal at the first edge, while these layers are interconnected at the second edge.
    Type: Grant
    Filed: April 14, 2023
    Date of Patent: April 2, 2024
    Assignee: CelLink Corporation
    Inventors: Jean-Paul Ortiz, Malcom Parker Brown, Casey Anderson, Will Findlay, Gabrielle Tate, Shawn D'Gama, Arturo Cantu-Chavez
  • Patent number: 11888180
    Abstract: Provided are multilayered flexible battery interconnects for interconnecting batteries in battery packs and methods of fabricating thereof. A multilayered flexible battery interconnect comprises insulating layers and two conductive layers, stacked together and positioned between the insulating layers. One conductive layer is thicker than the other. The thinner conductive layer comprises flexible tabs for connecting to batteries and, in some examples, comprises voltage sense traces. The smaller thickness of these flexible tabs ensures welding quality and allows using less energy during welding. The battery cell contacts, to which these flexible tabs are welded, can be significantly thicker. Furthermore, the smaller thickness enables fusible link integration into flexible tabs. At the same time, the two conductive layers collectively conduct current within the interconnect, with the thicker layer enhancing the overall current-carrying capacity.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: January 30, 2024
    Assignee: CelLink Corporation
    Inventors: Will Findlay, Mark Terlaak, Kevin Michael Coakley, Malcolm Parker Brown, Emily Hernandez
  • Publication number: 20230371174
    Abstract: Provided are flexible interconnect circuit assemblies and methods of fabricating thereof. In some examples, a flexible interconnect circuit comprises multiple circuit portions, which are monolithically integrated. During the fabrication, some of these circuit portions are folded relative to other portions, forming a stack in each fold. For example, the initial orientation of these portions can be selected such that smaller sheets can be used for circuit fabrication. The portions are then unfolded into the final design configuration. In some examples, the assembly also comprises a bonding film and a temporary support film attached to the bonding film such that the two circuit portions at least partially overlap with the bonding film and are positioned between the bonding film and temporary support film. In some examples, at least some circuit portions extend past the boundary of the bonding film and are coupled to connectors.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Applicant: CelLink Corporation
    Inventors: Jean-Paul Ortiz, Malcom Parker Brown, Mark Terlaak, Will Findlay, Kevin Michael Coakley, Casey Anderson
  • Publication number: 20230361434
    Abstract: Provided are multilayered flexible battery interconnects for interconnecting batteries in battery packs and methods of fabricating thereof. A multilayered flexible battery interconnect comprises insulating layers and two conductive layers, stacked together and positioned between the insulating layers. One conductive layer is thicker than the other. The thinner conductive layer comprises flexible tabs for connecting to batteries and, in some examples, comprises voltage sense traces. The smaller thickness of these flexible tabs ensures welding quality and allows using less energy during welding. The battery cell contacts, to which these flexible tabs are welded, can be significantly thicker. Furthermore, the smaller thickness enables fusible link integration into flexible tabs. At the same time, the two conductive layers collectively conduct current within the interconnect, with the thicker layer enhancing the overall current-carrying capacity.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Applicant: CelLink Corporation
    Inventors: Will Findlay, Mark Terlaak, Kevin Michael Coakley, Malcolm Parker Brown, Emily Hernandez
  • Patent number: 11751328
    Abstract: Provided are flexible interconnect circuit assemblies and methods of fabricating thereof. In some examples, a flexible interconnect circuit comprises multiple circuit portions, which are monolithically integrated. During the fabrication, some of these circuit portions are folded relative to other portions, forming a stack in each fold. For example, the initial orientation of these portions can be selected such that smaller sheets can be used for circuit fabrication. The portions are then unfolded into the final design configuration. In some examples, the assembly also comprises a bonding film and a temporary support film attached to the bonding film such that the two circuit portions at least partially overlap with the bonding film and are positioned between the bonding film and temporary support film. In some examples, at least some circuit portions extend past the boundary of the bonding film and are coupled to connectors.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: September 5, 2023
    Assignee: CelLink Corporation
    Inventors: Jean-Paul Ortiz, Malcom Parker Brown, Mark Terlaak, Will Findlay, Kevin Michael Coakley, Casey Anderson
  • Publication number: 20230269870
    Abstract: Provided are flexible interconnect circuit assemblies and methods of fabricating thereof. In some examples, a flexible interconnect circuit comprises multiple circuit portions, which are monolithically integrated. During the fabrication, some of these circuit portions are folded relative to other portions, forming a stack in each fold. For example, the initial orientation of these portions can be selected such that smaller sheets can be used for circuit fabrication. The portions are then unfolded into the final design configuration. In some examples, the assembly also comprises a bonding film and a temporary support film attached to the bonding film such that the two circuit portions at least partially overlap with the bonding film and are positioned between the bonding film and temporary support film. In some examples, at least some circuit portions extend past the boundary of the bonding film and are coupled to connectors.
    Type: Application
    Filed: February 22, 2023
    Publication date: August 24, 2023
    Applicant: CelLink Corporation
    Inventors: Jean-Paul Ortiz, Malcom Parker Brown, Mark Terlaak, Will Findlay, Kevin Michael Coakley, Casey Anderson
  • Publication number: 20230116550
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: October 31, 2022
    Publication date: April 13, 2023
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcom Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20230101123
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector for connecting to a flexible interconnect circuit comprises a base comprising a housing chamber defined by at least a first side wall and a second side wall that are oppositely positioned about the base. A circuit clamp is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. A cover piece is coupled to the base via a second hinge, and is configured to move between an open position and a closed position. The circuit clamp is configured to secure the flexible interconnect circuit between the base and the circuit clamp in the clamped position. One or more protrusions on the circuit clamp are each configured to interface with a socket within the first or second side wall to secure the circuit clamp in the clamped position.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 30, 2023
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcom Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 11545773
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector for connecting to a flexible interconnect circuit comprises a base comprising a housing chamber defined by at least a first side wall and a second side wall that are oppositely positioned about the base. A circuit clamp is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. A cover piece is coupled to the base via a second hinge, and is configured to move between an open position and a closed position. The circuit clamp is configured to secure the flexible interconnect circuit between the base and the circuit clamp in the clamped position. One or more protrusions on the circuit clamp are each configured to interface with a socket within the first or second side wall to secure the circuit clamp in the clamped position.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: January 3, 2023
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 11532902
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: December 20, 2022
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 11516904
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: November 29, 2022
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20220311103
    Abstract: Provided are multilayered flexible battery interconnects for interconnecting batteries in battery packs and methods of fabricating thereof. A multilayered flexible battery interconnect comprises insulating layers and two conductive layers, stacked together and positioned between the insulating layers. One conductive layer is thicker than the other. The thinner conductive layer comprises flexible tabs for connecting to batteries and, in some examples, comprises voltage sense traces. The smaller thickness of these flexible tabs ensures welding quality and allows using less energy during welding. The battery cell contacts, to which these flexible tabs are welded, can be significantly thicker. Furthermore, the smaller thickness enables fusible link integration into flexible tabs. At the same time, the two conductive layers collectively conduct current within the interconnect, with the thicker layer enhancing the overall current-carrying capacity.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 29, 2022
    Applicant: CelLink Corporation
    Inventors: Will Findlay, Mark Terlaak, Kevin Michael Coakley, Malcolm Parker Brown, Emily Hernandez
  • Publication number: 20220078902
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20220006212
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 6, 2022
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 11206730
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: December 21, 2021
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Patent number: 11108175
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: August 31, 2021
    Assignee: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Publication number: 20210076485
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay
  • Publication number: 20210021066
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector comprises a housing chamber defined by at least a first side wall and a second side wall oppositely positioned about the base. An edge support is positioned at each of the first side wall and the second side wall. The edge supports allow for precise placement of the flexible interconnect circuit inside the housing chamber. A cover piece is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. The cover piece includes a clamp portion securing the flexible interconnect circuit against the edge supports in the clamped position. A slider may be configured to move between an extended position and an inserted position within the housing chamber, and may include a convex upper surface configured to urge the flexible interconnect circuit upwards in the inserted position.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 21, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Publication number: 20210021068
    Abstract: Provided are terminal-free connectors for flexible interconnect circuits. A connector for connecting to a flexible interconnect circuit comprises a base comprising a housing chamber defined by at least a first side wall and a second side wall that are oppositely positioned about the base. A circuit clamp is coupled to the base via a first hinge, and is configured to move between a released position and a clamped position. A cover piece is coupled to the base via a second hinge, and is configured to move between an open position and a closed position. The circuit clamp is configured to secure the flexible interconnect circuit between the base and the circuit clamp in the clamped position. One or more protrusions on the circuit clamp are each configured to interface with a socket within the first or second side wall to secure the circuit clamp in the clamped position.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 21, 2021
    Applicant: CelLink Corporation
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Mark Terlaak, Will Findlay
  • Patent number: 10874015
    Abstract: Provided are flexible hybrid interconnect circuits and methods of forming thereof. A flexible hybrid interconnect circuit comprises multiple conductive layers, stacked and spaced apart along the thickness of the circuit. Each conductive layer comprises one or more conductive elements, one of which is operable as a high frequency (HF) signal line. Other conductive elements, in the same and other conductive layers, form an electromagnetic shield around the HF signal line. Some conductive elements in the same circuit are used for electrical power transmission. All conductive elements are supported by one or more inner dielectric layers and enclosed by outer dielectric layers. The overall stack is thin and flexible and may be conformally attached to a non-planar surface. Each conductive layer may be formed by patterning the same metallic sheet. Multiple pattern sheets are laminated together with inner and outer dielectric layers to form a flexible hybrid interconnect circuit.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 22, 2020
    Assignee: CELLINK CORPORATION
    Inventors: Kevin Michael Coakley, Malcolm Parker Brown, Jose Juarez, Emily Hernandez, Joseph Pratt, Peter Stone, Vidya Viswanath, Will Findlay