Patents by Inventor William A. Brake

William A. Brake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12125396
    Abstract: An Unmanned Aerial System configured to receive a request from a user and fulfill that request using an Unmanned Aerial Vehicle. The Unmanned Aerial System selects a distribution center that is within range of the user, and deploys a suitable Unmanned Aerial Vehicle to fulfill the request from that distribution center. The Unmanned Aerial System is configured to provide real-time information about the flight route to the Unmanned Aerial Vehicle during its flight, and the Unmanned Aerial Vehicle is configured to dynamically update its mission based on information received from the Unmanned Aerial System.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: October 22, 2024
    Assignee: Zipline International Inc.
    Inventors: Andrew Chambers, Bryan Wade, Catalin Drula, David Halley, Igor Napolskikh, Keenan Wyrobek, Keller Rinaudo, Nicholas Brake, Ryan Oksenhorn, Ryan Patterson, William Hetzler
  • Publication number: 20140338576
    Abstract: A Novel fuel object comprised of a proportion of corn stover and a proportion of wood fiber combined with a basically reacting compound. The object comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 20, 2014
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20140075832
    Abstract: A Novel fuel object comprised of a proportion of corn stover and a proportion of wood fiber combined with a basically reacting compound. The object comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: October 15, 2013
    Publication date: March 20, 2014
    Applicant: BIOGENIC REAGENTS LLC
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20130152461
    Abstract: A Novel fuel object comprised of a proportion of corn stover and a proportion of wood fiber combined with a basically reacting compound. The object comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: February 8, 2013
    Publication date: June 20, 2013
    Applicant: Biogenic Reagents LLC
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20130145684
    Abstract: A Novel fuel object comprised of a proportion of switch grass and a proportion of wood fiber combined with a basically reacting compound. The fuel comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized fuel object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: February 13, 2013
    Publication date: June 13, 2013
    Applicant: Biogenic Reagents LLC
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20120174476
    Abstract: A Novel fuel object comprised of a proportion of corn stover and a proportion of wood fiber combined with a basically reacting compound. The object comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 12, 2012
    Applicant: Biogenic Reagents LLC
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20120174475
    Abstract: A Novel fuel object comprised of a proportion of switch grass and a proportion of wood fiber combined with a basically reacting compound. The fuel comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized fuel object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 12, 2012
    Applicant: Biogenic Reagents LLC
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20110232172
    Abstract: A Novel fuel object comprised of a proportion of switch grass and a proportion of wood fiber combined with a basically reacting compound. The fuel comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized fuel object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: June 9, 2011
    Publication date: September 29, 2011
    Applicant: RENEWAFUEL, LLC.
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20110236839
    Abstract: A Novel fuel object comprised of a proportion of corn stover and a proportion of wood fiber combined with a basically reacting compound. The object comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: March 29, 2011
    Publication date: September 29, 2011
    Applicant: RENEWAFUEL, LLC.
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja
  • Publication number: 20100139156
    Abstract: A Novel fuel object comprised of a proportion of corn stover and a proportion of wood fiber combined with a basically reacting compound. The object comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: January 26, 2009
    Publication date: June 10, 2010
    Inventors: JAMES A. MENNELL, William A. Brake, Kenneth G. Oja
  • Publication number: 20100139155
    Abstract: A Novel fuel object comprised of a proportion of switch grass and a proportion of wood fiber combined with a basically reacting compound. The fuel comprises fiber of the appropriate size and moisture content combined with an inorganic base. An appropriately sized fuel object is readily manufactured, provides high heat output, is consistent in fuel characteristics, and is sized and configured for use in power generation facilities. Based on fiber selection and processing, the fuel object may be used in a variety of current power generation technologies including stoker, fluidized bed, gasifier, cyclonic, direct-fired, and pulverized coal technologies, and results in significant reduction of air emissions (including sulfur dioxide, nitrogen oxides, hydrochloric acid, carbon monoxide, carbon dioxide, and mercury) compared to coal with no loss of boiler or furnace efficiency.
    Type: Application
    Filed: January 26, 2009
    Publication date: June 10, 2010
    Inventors: James A. Mennell, William A. Brake, Kenneth G. Oja