Patents by Inventor William A. FRENCH

William A. FRENCH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150027908
    Abstract: An apparatus includes a vapor cell having multiple cavities fluidly connected by one or more channels. At least one of the cavities is configured to receive a first material able to dissociate into one or more gases that are contained within the vapor cell. At least one of the cavities is configured to receive a second material able to absorb at least a portion of the one or more gases. The vapor cell could include a first cavity configured to receive the first material and a second cavity fluidly connected to the first cavity by at least one first channel, where the second cavity is configured to receive the gas(es). The vapor cell could also include a third cavity fluidly connected to at least one of the first and second cavities by at least one second channel, where the third cavity is configured to receive the second material.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Roozbeh Parsa, Peter J. Hopper, William French
  • Publication number: 20150008339
    Abstract: An optical projection tomography system comprises a support arranged to support an object (63) and to rotate the object between a plurality of orientations, a first imaging system (64) arranged to image the object from a first direction to form a first image, and a second imaging system arranged to image the object from a second direction to form a second image, data acquisition means (66, 67) arranged to acquire image data from the first and second images for each of the orientations and processing means arranged to process the image data to generate an image data set.
    Type: Application
    Filed: March 7, 2013
    Publication date: January 8, 2015
    Inventors: Paul Michael William French, James Andrew McGinty
  • Patent number: 8878295
    Abstract: A DMOS transistor with a lower on-state drain-to-source resistance and a higher breakdown voltage utilizes a slanted super junction drift structure that lies along the side wall of an opening with the drain region at the bottom of the opening and the source region near the top of the opening.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 4, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Alexei Sadovnikov, William French, Erika Mazotti, Richard Wendell Foote, Jr., Punit Bhola, Vladislav Vashchenko
  • Patent number: 8836327
    Abstract: The cost and size of an atomic magnetometer are reduced by attaching a vapor cell structure that has a vapor cell cavity to a base die that has a laser light source that outputs light to the vapor cell cavity, and attaching a photo detection die that has a photodiode to the vapor cell structure to detect light from the laser light source that passes through the vapor cell cavity.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 16, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: William French, Philipp Lindorfer, Peter J. Hopper, Roozbeh Parsa, Andrew James West, Byron Jon Roderick Shulver
  • Patent number: 8815700
    Abstract: In a SOI process, a high lateral voltage isolation structure is formed by providing at least two concentric dielectric filled trenches, removing the semiconductor material between the dielectric filled trenches and filling the resultant gap with dielectric material to define a single wide dielectric filled trench.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: August 26, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Peter J. Hopper, William French, Kyuwoon Hwang
  • Patent number: 8816199
    Abstract: A cable routing system includes a longitudinally-expanding body positionable within an IT rack having a frame and two or more NEMA rails coupled to the frame. A pair of mounting brackets are positioned proximate each distal end of the longitudinal-expanding body and configured to directly engage the frame of the IT rack. A cable routing tray is longitudinally affixed to the longitudinally-expanding body and configured to rout cables longitudinally along at least a portion of the longitudinally-expanding body. One or more vertical radiused supports are configured to define a minimum vertical bend radius for cables routed through the cable routing tray.
    Type: Grant
    Filed: March 31, 2012
    Date of Patent: August 26, 2014
    Assignee: EMC Corporation
    Inventors: F. William French, Scot C. Tata, Wei Jun Feng
  • Patent number: 8735980
    Abstract: A semiconductor structure, which serves as the core of a semiconductor fabrication platform, has a combination of empty-well regions and filled-well regions variously used by electronic elements, particularly insulated-gate field-effect transistors (“IGFETs”), to achieve desired electronic characteristics. A relatively small amount of semiconductor well dopant is near the top of an empty well. A considerable amount of semiconductor well dopant is near the top of a filled well. Some IGFETs (100, 102, 112, 114, 124, and 126) utilize empty wells (180, 182, 192, 194, 204, and 206) in achieving desired transistor characteristics. Other IGFETs (108, 110, 116, 118, 120, and 122) utilize filled wells (188, 190, 196, 198, 200, and 202) in achieving desired transistor characteristics.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 27, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, Sandeep Bahl, William French, Jeng-Jiun Yang, Donald Archer, David C. Parker, Prasad Chaparala
  • Patent number: 8722505
    Abstract: A semiconductor capacitor with large area plates and a small footprint is formed on a semiconductor wafer by forming an opening in the wafer, depositing a first metal atoms through a first shadow mask that lies spaced apart from the wafer to form a first metal layer in the opening, a dielectric layer on the first metal layer, and a second metal atoms through a second shadow mask that lies spaced apart from the wafer to form a second metal layer on the dielectric layer.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 13, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, William French
  • Patent number: 8704454
    Abstract: A method includes forming one or more capacitors over a substrate. The method also includes forming a transformer at least partially over the substrate. The transformer is adjacent to at least one of the one or more capacitors. At least a portion of the transformer is formed at a same level over the substrate as the one or more capacitors. The method further includes coupling the one or more capacitors and the transformer to at least one embedded integrated circuit die. The one or more capacitors, the transformer, and the at least one embedded integrated circuit die form at least part of a light emitting diode (LED) driver.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: April 22, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter L. Hopper, Ann M. Gabrys, William French
  • Patent number: 8659149
    Abstract: Galvanic isolation between a high-voltage die and a low-voltage die in a multi-die chip is provided by a galvanic isolation die that physically supports the high-voltage die and the low-voltage die, and provides capacitive structures with high breakdown voltages that allow the high-voltage die to capacitively communicate with the low-voltage die.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 25, 2014
    Assignee: National Semiconductor Corporation
    Inventors: William French, Peter J. Hopper, Ann Gabrys
  • Patent number: 8585587
    Abstract: An endoscope includes a light source operable to generate coherent incident light, and a plurality of imaging optical fibers that are arranged in a fiber bundle, arranged to receive light at a proximal end of the fiber bundle, and arranged to transmit light to a distal end of the fiber bundle. The endoscope further includes a spatial light phase modulator between the light source and the fiber bundle, and arranged to receive the incident light from the light source and to adjust the relative phase of the incident light entering each of the plurality of imaging optical fibers.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: November 19, 2013
    Assignee: Imperial Innovations Limited
    Inventors: Paul Michael William French, Carl Paterson, Mark Andrew Aquilla Neil, Christopher William Dunsby
  • Patent number: 8554529
    Abstract: A method of simulating an integrated circuit device under test (DUT) is provided, wherein the DUT includes a plurality of terminals. For each terminal of the DUT, a probe pulse is applied to the terminal and a reaction is recorded at the terminal and each of the other terminals to obtain values representative of reactive tails for the terminal. For each terminal, the values representative of the reactive tails obtained for the terminal are stored as an entry of a look-up table. Each entry includes n+x fields, wherein n represents a number of arguments in the entry and x represents a number of functions in the entry. For each terminal, a signal value at a selected time step is calculated.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 8, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Yuri Mirgorodski, Peter J. Hopper, William French, Philipp Lindorfer
  • Patent number: 8524548
    Abstract: A lateral DMOS transistor formed on a silicon-on-insulator (SOI) structure has a higher breakdown voltage that results from a cavity that is formed in the bulk region of the SOI structure. The cavity exposes a portion of the bottom surface of the insulator layer of the SOI structure that lies directly vertically below the drift region of the DMOS transistor.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 3, 2013
    Assignee: National Semiconductor Corporation
    Inventors: William French, Vladislav Vashchenko, Richard Wendell Foote, Jr., Alexei Sadovnikov, Punit Bhola, Peter J. Hopper
  • Publication number: 20130224887
    Abstract: A laminated magnetic core, which has a number of magnetic layers and a number of insulation layers which are arranged so that an insulation layer lies between each vertically adjacent pair of magnetic layers, is formed in a method that forms the magnetic layers with an electroplating process, and the insulation layers with a sputter depositing process.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Inventors: Dok Won Lee, Andrei Papou, William French, Peter J. Hopper
  • Patent number: 8519506
    Abstract: A galvanic isolation integrated circuit system includes a semiconductor substrate; a layer of thermally conductive material, e.g., CVD nano- or poly-diamond thin film or boron nitride CVD thin film, formed over the semiconductor substrate; a first integrated circuit structure formed over the layer of thermally conductive material; a second integrated circuit structure formed over the layer of thermally conductive material, the second integrated circuit structure being spaced apart from the first integrated circuit structure; and a galvanic isolation structure formed over the layer of thermally conductive material between the first and second integrated circuit structures and connected to the first integrated circuit structure and the second integrated circuit structure.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 27, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, William French, Ann Gabrys
  • Publication number: 20130176703
    Abstract: A micro-fabricated atomic clock structure is thermally insulated so that the atomic clock structure can operate with very little power in an environment where the external temperature can drop to ?40° C., while at the same time maintaining the temperature required for the proper operation of the VCSEL and the gas within the vapor cell.
    Type: Application
    Filed: January 7, 2012
    Publication date: July 11, 2013
    Inventors: Peter J. Hopper, William French, Paul Mawson, Steven Hunt, Roozbeh Parsa, Martin Fallon, Ann Gabrys, Andrei Papou
  • Publication number: 20130168808
    Abstract: Magnetic laminations are formed in the openings of a first non-conductive structure, which is formed in the opening of a second non-conductive structure that has a maximum aspect ratio that is less than the maximum aspect ratio of the first non-conductive structure. The second non-conductive structure is more crack resistant than the first non-conductive structure, and thereby protects the first non-conductive structure and the magnetic laminations from environmental contaminants.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventors: Andrei Papou, William French, Peter J. Hopper
  • Patent number: 8466535
    Abstract: The spikes in current and voltage that result from the failure of a galvanic dielectric layer are safely contained by a galvanic isolation fuse that pops and forms and open circuit between a high-voltage die and a low-voltage die in response to the failure of the galvanic dielectric layer.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: June 18, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, William French, Ann Gabrys, Martin Fallon
  • Patent number: 8466537
    Abstract: Magnetic laminations are formed in the openings of a first non-conductive structure, which is formed in the opening of a second non-conductive structure that has a maximum aspect ratio that is less than the maximum aspect ratio of the first non-conductive structure. The second non-conductive structure is more crack resistant than the first non-conductive structure, and thereby protects the first non-conductive structure and the magnetic laminations from environmental contaminants.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: June 18, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Andrei Papou, William French, Peter J. Hopper
  • Publication number: 20130147472
    Abstract: The cost and size of an atomic magnetometer are reduced by attaching a vapor cell structure that has a vapor cell cavity to a base die that has a laser light source that outputs light to the vapor cell cavity, and attaching a photo detection die that has a photodiode to the vapor cell structure to detect light from the laser light source that passes through the vapor cell cavity.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Inventors: William French, Philipp Lindorfer, Peter J. Hopper, Roozbeh Parsa, Andrew James West, Byron Jon Roderick Shulver