Patents by Inventor William A. Nelson

William A. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974775
    Abstract: Medical devices for accessing the central nervous system, as well as making and using medical devices, are disclosed. An example medical device may include an expandable access port. The expandable access port may include a housing having a plurality of tines coupled thereto. A thrust washer may be disposed along the housing. An actuation member may be coupled to the housing. The actuation member may be designed to shift the plurality of tines between a first configuration and an expanded configuration.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: May 7, 2024
    Assignee: MINNETRONIX NEURO, INC.
    Inventors: Brian Dale Nelson, Don William Eldon Evans
  • Publication number: 20240147631
    Abstract: Devices, systems, and methods for making and using highly sustainable circuit assemblies are disclosed herein. In various aspects, the highly sustainable circuit assembly includes a substrate layer; and a pattern of contact points supported by the substrate layer. The pattern of contact points can be configured to correspond to at least one terminal of an electrical component. The pattern of contact points can include a deformable conductive material. The deformable conductive material can be a non-hazardous, readily reclaimable, readily recyclable material.
    Type: Application
    Filed: February 25, 2022
    Publication date: May 2, 2024
    Applicant: Liquid Wire, LLC
    Inventors: Jorge E. Carbo, JR., Sai Srinivas Desabathina, Michael Adventure Hopkins, Charles J. Kinzel, Mark S. Kruskopf, Jesse Michael Martinez, Katherine M. Nelson, Taylor V. Neumann, Trevor Antonio Rivera, Mark William Ronay, Michael Jasper Wallans, Austin Michael Clarke
  • Patent number: 11971519
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and a primary surface; a textured surface region; and an antireflective coating disposed on the textured surface region. The textured surface region comprises structural features and an average texture height (Rtext) from 50 nm to 300 nm. The substrate exhibits a sparkle of less than 5%, as measured by PPD140, and a transmittance haze of less than 40%, at a 0° incident angle. The antireflective coating comprises alternating high refractive index and low refractive index layers. Each of the low index layers comprises a refractive index of less than or equal to 1.8, and each of the high index layers comprises a refractive index of greater than 1.8. The article also exhibits a first-surface average photopic specular reflectance (% R) of less than 0.3% at any incident angle from about 5° to 20° from normal at visible wavelengths.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 30, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Cameron Robert Nelson, James Joseph Price, Jayantha Senawiratne, Florence Christine Monique Verrier, David Lee Weidman
  • Publication number: 20240138062
    Abstract: Devices, systems, and methods for making and using circuit assemblies having a pattern of deformable conductive material formed therein are disclosed herein. In various aspects, a circuit assembly can include a substrate layer; a first pattern of deformable conductive material formed on a surface of the substrate layer using a removable stencil; and a first stacked layer configured to cover at least a portion of the first pattern of deformable conductive material.
    Type: Application
    Filed: February 25, 2022
    Publication date: April 25, 2024
    Applicant: Liquid Wire, LLC
    Inventors: Mark S. Kruskopf, Katherine M. Nelson, Jesse Michael Martinez, Michael Austin Clarke, Mark William Ronay
  • Publication number: 20240108994
    Abstract: A printing system includes: a plurality of unitary objects each having a unique identification code, a plurality of fixtures arranged on a base, and a printer controller. Each unitary object includes a uniquely-shaped three-dimensional body fixed to a plate by a connection mechanism. Each fixture includes: a fixture block defining a printing opening; and a plate guide defined in the fixture block and configured to receive the plate. A target region of the three-dimensional body is aligned within the printing opening of the fixture block when the plate is fixed within the plate guide. The printer controller is configured to: detect the unique identification code of each unitary object; and control an ink dispenser to print a unique topographical design on each aligned target region of each three-dimensional body, the unique topographical design being associated with the detected unique identification code.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 4, 2024
    Inventors: William Howard Lyon Belknap, JR., Robert Chester Mackowiak, Patrick Marr, Daniel Anthony D'Amico, Tyler Nelson
  • Patent number: 11940593
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and a primary surface; and the primary surface having defined thereon a diffractive surface region. The diffractive surface region comprises a plurality of structural features that comprises a plurality of different heights in a multimodal distribution. Further, the substrate exhibits a sparkle of less than 4%, as measured by pixel power deviation (PPD140) at an incident angle of 0° from normal, a distinctness of image (DOI) of less than 80% at an incident angle of 20° from normal, and a transmittance haze of less than 20% from an incident angle of 0° from normal.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: March 26, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Jiangwei Feng, Shandon Dee Hart, Karl William Koch, III, Cameron Robert Nelson, Wageesha Senaratne, William Allen Wood
  • Patent number: 11928772
    Abstract: In a ray tracer, to prevent any long-running query from hanging the graphics processing unit, a traversal coprocessor provides a preemption mechanism that will allow rays to stop processing or time out early. The example non-limiting implementations described herein provide such a preemption mechanism, including a forward progress guarantee, and additional programmable timeout options that can be time or cycle based. Those programmable options provide a means for quality of service timing guarantees for applications such as virtual reality (VR) that have strict timing requirements.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: March 12, 2024
    Assignee: NVIDIA Corporation
    Inventors: Greg Muthler, Ronald Charles Babich, Jr., William Parsons Newhall, Jr., Peter Nelson, James Robertson, John Burgess
  • Publication number: 20230383289
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 30, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20230357766
    Abstract: The disclosure provides modified pegRNAs comprising one or more appended nucleotide structural motifs which increase the editing efficiency during prime editing, increase half-life in vivo, and increase lifespan in a cell. Modifications include, but are not limited to, an aptamer (e.g., prequeosim-1 riboswitch aptamer or “evopreQi-1”) or a variant thereof, a pseudoknot (the MMLV viral genome pseudoknot or “Mpknot-1”) or a variant thereof, a tRNA (e.g., the modified tRNA used by MMLV as a primer for reverse transcription) or a variant thereof, or a G-quadruplex or a variant thereof. The disclosure further provides prime editor complexes comprising the modified pegRNAs and having improved characteristics and/or performance, including stability, improved cellular lifespan, and improved editing efficiency.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 9, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, James William Nelson, Peyton Barksdale Randolph, Andrew Vito Anzalone, Simon Shen, Kelcee Everette, Peter J. Chen
  • Publication number: 20230340467
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20230340465
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20230340466
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incoporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Patent number: 11763101
    Abstract: A portable radio may include a radio frequency (RF) transmitter, an RF receiver, and an audio input transducer. A controller may store command messages and speech messages, implement a stand-alone, speech recognition and text-to-speech (TTS) function for the stored command messages and stored speech messages. The controller may also control at least one of an RF transmitter and RF receiver of a remote radio based upon an input command matching one of the stored command messages using the audio input transducer and the stand-alone speech recognition and TTS function, and convert a speech message matching one of the stored speech messages into a text message. The RF transmitter may send the text message to the remote receiver.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: September 19, 2023
    Assignee: HARRIS GLOBAL COMMUNICATIONS, INC.
    Inventors: William Nelson Furman, John W. Nieto, William M. Batts, Marcelo De Risio, Denise Ann Wing
  • Patent number: 11643652
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: May 9, 2023
    Assignees: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Patent number: 11536114
    Abstract: A system to clean well casing in a downhole well operation. The system comprises an inner collar having flow ports and an out collar having jet ports in fluid communication with the flow ports. The inner collar couples with a section of a tool string and the outer collar rotates about the inner collar in response to fluid flow through the tool string. The inner collar can include a sleeve. The sleeve can be moved from a first position to a second position causing the jet ports to be in fluid communication with the flow ports. The inner collar remains relatively stationary with respect to the rotation of the outer collar. In addition, the jet ports are angled in a way that a portion of force generated by the fluid flow through the jet ports induce rotation of the outer collar in the opposite direction of the fluid flow.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: December 27, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Carl William Nelson
  • Publication number: 20220372564
    Abstract: Systems and methods for detecting the presence of a target nucleic acid in a sample via a recombinase polymerase amplification (RPA) reaction followed by a FEN1 cleavage detection reaction are disclosed. One aspect of the present disclosure relates to systems involving a sample collection device for collecting a sample and performing an RPA reaction on the sample, followed by the detection of the amplified product via a two-step FEN1 cleavage detection reaction which generates a fluorescent signal indicative of the presence of amplified product.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 24, 2022
    Applicant: TETRACORE, INC.
    Inventors: Kyle GERBER, Lisa COCKRELL, William NELSON, Kyle ARMANTROUT
  • Patent number: 11498608
    Abstract: Hydraulic bi-directional flow switches are disclosed. A disclosed example apparatus includes a piston disposed in a fluid channel between a first fluid connection and a second fluid connection, where the first and second fluid connections define a fluid pathway for hydraulic steering fluid. The example apparatus also includes a detector to detect a movement of the piston away from a default position of the piston, where the piston is to displace from the default position when the hydraulic steering fluid flows along the fluid pathway.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: November 15, 2022
    Assignee: Deere & Company
    Inventor: Frederick William Nelson
  • Publication number: 20220356469
    Abstract: The present disclosure provides compositions and methods for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The nucleotide change can include a single-nucleotide change (e.g., any transition or any transversion), an insertion of one or more nucleotides, or a deletion of one or more nucleotides. More in particular, the disclosure provides fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA.
    Type: Application
    Filed: March 31, 2021
    Publication date: November 10, 2022
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20220204975
    Abstract: The present specification provides compositions and methods that are capable of directly installing an insertion or deletion of a given nucleotide at a specified genetic locus. The compositions and methods involve the novel combination of the use an engineered RNA enzyme (i.e., “ribozyme”) that is capable of site-specifically inserting or deleting a single nucleotide at a genetic locus and the use of a nucleic acid programmable DNA binding protein (napDNAbp) (e.g., Cas9) to target the engineered ribozyme to a specified genetic locus, thereby allowing for the direct installation of an insertion of deletion at the specified genetic locus by the engineered ribozyme.
    Type: Application
    Filed: April 10, 2020
    Publication date: June 30, 2022
    Applicants: President and Fellows of Harvard College, The Broad Institute, Inc.
    Inventors: David R. Liu, James William Nelson
  • Patent number: RE49130
    Abstract: A ladder attachment platform is provided that includes a base for attachment to a ladder that has first and second side rails and a plurality of rungs that extend between in a lateral direction. Also included is a user platform for having a user stand thereon that is carried by the base. The user platform may be positioned with respect to the ladder so that it is not located between a first plane that extends through the first side rail and is perpendicular to the lateral direction and a second plane that extends through the second side rail and is perpendicular to the lateral direction.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: July 12, 2022
    Assignees: Savannah River Nuclear Solutions, LLC
    Inventors: Richard W. Swygert, William Nelson Lewis, Jr.