Patents by Inventor William A. Olson
William A. Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250072928Abstract: An apparatus comprises a body assembly and a shaft extending distally therefrom. The shaft defines a longitudinal axis. The apparatus further comprises an acoustic waveguide and an articulation section coupled with the shaft. A portion of the articulation section encompasses a flexible portion of the waveguide. The articulation section further comprises first member and a second member that is longitudinally translatable relative to the first member. The apparatus further comprises an end effector including an ultrasonic blade in acoustic communication with the waveguide. A distal portion the ultrasonic blade is disposed in a first direction away from the longitudinal axis at a bend angle. The end effector also includes a clamp arm that is coupled with the first member and the second member, and an articulation drive assembly operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis in the first direction.Type: ApplicationFiled: November 20, 2024Publication date: March 6, 2025Inventors: Foster B. Stulen, William A. Olson, William B. Weisenburgh, II
-
Patent number: 12178464Abstract: An apparatus comprises a body assembly and a shaft extending distally therefrom. The shaft defines a longitudinal axis. The apparatus further comprises an acoustic waveguide and an articulation section coupled with the shaft. A portion of the articulation section encompasses a flexible portion of the waveguide. The articulation section further comprises first member and a second member that is longitudinally translatable relative to the first member. The apparatus further comprises an end effector including an ultrasonic blade in acoustic communication with the waveguide. A distal portion the ultrasonic blade is disposed in a first direction away from the longitudinal axis at a bend angle. The end effector also includes a clamp arm that is coupled with the first member and the second member, and an articulation drive assembly operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis in the first direction.Type: GrantFiled: May 5, 2023Date of Patent: December 31, 2024Assignee: Cilag GmbH InternationalInventors: Foster B. Stulen, William A. Olson, William B. Weisenburgh, II
-
Patent number: 11925378Abstract: An ultrasonic surgical device is disclosed including a surgical tool including a proximal transducer mounting portion defining a surface, a distal end effector end, and a waveguide disposed therebetween, the waveguide extending along a longitudinal axis. The ultrasonic surgical device further includes a transducer is in mechanical communication with the surface of the transducer mounting portion. The transducer is configured to operate in a D31 mode with respect to the longitudinal axis of the waveguide. Upon activation by an electrical signal having a predetermined frequency component, the transducer is configured to induce a standing wave in the surgical tool to cause the end effector to vibrate, the standing wave having a wavelength proportional to the predetermined frequency component of the electrical signal.Type: GrantFiled: July 31, 2019Date of Patent: March 12, 2024Assignee: Cilag GmbH InternationalInventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck, Kevin L. Houser
-
Patent number: 11786291Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw, a clamp arm pad, and a cantilever electrode that is free to deflect. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. Also disclosed are configurations where the clamp arm includes a peripheral cantilever electrode and a clamp arm pad extending beyond the electrode, a floating cantilever electrode and a resilient clamp arm pad, an interlocked cantilever electrode plate and a clamp arm pad configured to receive the plate, a laterally deflectable cantilever electrode and a clamp arm pad extending beyond the electrode, and a flexible cantilever electrode and a clamp arm pad extending beyond the electrode.Type: GrantFiled: May 29, 2020Date of Patent: October 17, 2023Assignee: Cilag GmbH InternationalInventors: John M. Sarley, Chad P. Boudreaux, Tyler N. Brehm, Wei Guo, Ellen E. Burkart, Jeffrey D. Messerly, Craig N. Faller, Robert S. Bishop, Michael A. Keenan, William A. Olson, Richard W. Flaker, Frederick E. Shelton, IV
-
Publication number: 20230320747Abstract: An apparatus comprises a body assembly and a shaft extending distally therefrom. The shaft defines a longitudinal axis. The apparatus further comprises an acoustic waveguide and an articulation section coupled with the shaft. A portion of the articulation section encompasses a flexible portion of the waveguide. The articulation section further comprises first member and a second member that is longitudinally translatable relative to the first member. The apparatus further comprises an end effector including an ultrasonic blade in acoustic communication with the waveguide. A distal portion the ultrasonic blade is disposed in a first direction away from the longitudinal axis at a bend angle. The end effector also includes a clamp arm that is coupled with the first member and the second member, and an articulation drive assembly operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis in the first direction.Type: ApplicationFiled: May 5, 2023Publication date: October 12, 2023Inventors: Foster B. Stulen, William A. Olson, William B. Weisenburgh, II
-
Publication number: 20230277205Abstract: The present disclosure is directed to end effectors. An end effector includes an outer shaft extending along a longitudinal axis and an inner shaft partially located within the outer shaft. The end effector may include an ultrasonic blade. The inner shaft may include biased and unbiased portions. The inner shaft and outer shaft may be translatable relative to one another. At one translatable position, the biased portion of the inner shaft may be located within the outer shaft and the unbiased portion may be substantially straight along the longitudinal axis. At another translatable position, the biased portion of the inner shaft may be located outside of and distally positioned from the outer shaft such that the biased portion of the inner shaft is bent away from the longitudinal axis.Type: ApplicationFiled: February 17, 2023Publication date: September 7, 2023Inventors: William A. Olson, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
-
Patent number: 11678903Abstract: An apparatus comprises a body assembly and a shaft extending distally therefrom. The shaft defines a longitudinal axis. The apparatus further comprises an acoustic waveguide and an articulation section coupled with the shaft. A portion of the articulation section encompasses a flexible portion of the waveguide. The articulation section further comprises first member and a second member that is longitudinally translatable relative to the first member. The apparatus further comprises an end effector including an ultrasonic blade in acoustic communication with the waveguide. A distal portion the ultrasonic blade is disposed in a first direction away from the longitudinal axis at a bend angle. The end effector also includes a clamp arm that is coupled with the first member and the second member, and an articulation drive assembly operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis in the first direction.Type: GrantFiled: February 14, 2020Date of Patent: June 20, 2023Assignee: Cilag GmbH InternationalInventors: Foster B. Stulen, William A. Olson, William B. Weisenburgh, II
-
Publication number: 20230128575Abstract: A surgical device, is disclosed herein. The surgical device can include an end effector including a clamp jaw, a trigger configured to open and close the clamp jaw, a sensor configured to detect a relative position of the trigger, and a control circuit communicably coupled to the sensor and a generator, wherein the control circuit is configured to cause the generator to administer energy associated with a surgical operation to be performed on the tissue, receive a signal from the sensor, determine that the clamp jaws are not positioned to administer the energy associated with the surgical operation, and cause the generator to administer energy configured to release the tissue from an ultrasonic blade, wherein the energy configured to release the tissue from the clamp jaw is different than the energy associated with a surgical operation to be performed on the tissue.Type: ApplicationFiled: October 11, 2022Publication date: April 27, 2023Inventors: Jacob S. Gee, Michael A. Keenan, William A. Olson, Tyler N. Brehm, Cameron D. McLain, Kevin Price
-
Publication number: 20230112022Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.Type: ApplicationFiled: October 12, 2022Publication date: April 13, 2023Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Estera, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. D'Uva, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
-
Patent number: 11602364Abstract: A surgical instrument includes an ultrasonic waveguide extending through a body assembly. An ultrasonic blade connects to the ultrasonic waveguide. A clamp arm assembly of the surgical instrument is able to move from an opened position for receiving a tissue toward a closed position for clamping the tissue. The clamp arm assembly includes a clamp body and a clamp pad facing the ultrasonic blade. A clamp arm actuator of the surgical instrument is able to move from a first position toward a second position to direct the clamp arm assembly from the opened position toward the closed position. A modular coupling of the surgical instrument connects to the clamp pad such that at least the clamp pad can be disconnected relative to the ultrasonic blade for replacement thereof.Type: GrantFiled: October 31, 2017Date of Patent: March 14, 2023Assignee: Cilag GmbH InternationalInventors: Ryan M. Asher, Gregory D. Bishop, Brian D. Black, Chad P. Boudreaux, David J. Cagle, William E. Clem, Joseph Dennis, Kristen G. Denzinger, Benjamin D. Dickerson, Kevin M. Fiebig, Ellen Burkart, Christina M. Hough, John V. Hunt, Cody R. Jackson, Cory G. Kimball, Jeffrey D. Messerly, Gabriel I. Myers, Ion V. Nicolaescu, William A. Olson, Candice Otrembiak, John K. Swain, Gregory A. Trees, John A. Weed, III, William B. Weisenburgh, II, Eitan T. Wiener, Barry C. Worrell, David C. Yates, Monica L. Zeckel
-
Patent number: 11583306Abstract: The present disclosure is directed to end effectors. An end effector includes an outer shaft extending along a longitudinal axis and an inner shaft partially located within the outer shaft. The end effector may include an ultrasonic blade. The inner shaft may include biased and unbiased portions. The inner shaft and outer shaft may be translatable relative to one another. At one translatable position, the biased portion of the inner shaft may be located within the outer shaft and the unbiased portion may be substantially straight along the longitudinal axis. At another translatable position, the biased portion of the inner shaft may be located outside of and distally positioned from the outer shaft such that the biased portion of the inner shaft is bent away from the longitudinal axis.Type: GrantFiled: April 6, 2020Date of Patent: February 21, 2023Assignee: Cilag GmbH InternationalInventors: William A. Olson, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
-
Patent number: 11529164Abstract: A surgical apparatus comprises a body, an ultrasonic transducer, a shaft, and an end effector. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The shaft couples the end effector and the body together. The end effector comprises an ultrasonic blade in acoustic communication with the ultrasonic transducer. The ultrasonic blade includes a recess region having a plurality of recesses. The recess region is tapered such that the cross-sectional area of the recess region decreases along the length of the recess region. The ultrasonic blade is also curved such that a central longitudinal axis of the ultrasonic blade extends along a curved path. A reference circuit is used to account for voltage drops of unknown values during operation of the surgical apparatus.Type: GrantFiled: February 12, 2019Date of Patent: December 20, 2022Assignee: Cilag GmbH InternationalInventors: Foster B. Stulen, John B. Schulte, Jeffrey L. Aldridge, Jeffery T. Kirk, Randal T. Byrum, Douglas J. Turner, John M. Sarley, David A. Witt, William A. Olson, Kyle P. Moore
-
Publication number: 20220346824Abstract: A method of fabricating an ultrasonic medical device is presented. The method includes machining a surgical tool from a flat metal stock, contacting a face of a first transducer with a first face of the surgical tool, and contacting a face of a second transducer with an opposing face of the surgical tool opposite the first transducer. The first and second transducers are configured to operate in a D31 mode with respect to the longitudinal portion of the surgical tool. Upon activation, the first transducer and the second transducer are configured to induce a standing wave in the surgical tool and the induced standing wave comprises a node at a node location in the surgical tool and an antinode at an antinode location in the surgical tool.Type: ApplicationFiled: March 1, 2022Publication date: November 3, 2022Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Frederick L. Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
-
Patent number: 11484333Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.Type: GrantFiled: January 10, 2019Date of Patent: November 1, 2022Assignee: Cilag GmbH InternationalInventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Labhasetwar, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. D'Uva, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
-
Patent number: 11350959Abstract: A method of fabricating an ultrasonic medical device is presented. The method includes machining a surgical tool from a flat metal stock, contacting a face of a first transducer with a first face of the surgical tool, and contacting a face of a second transducer with an opposing face of the surgical tool opposite the first transducer. The first and second transducers are configured to operate in a D31 mode with respect to the longitudinal portion of the surgical tool. Upon activation, the first transducer and the second transducer are configured to induce a standing wave in the surgical tool and the induced standing wave comprises a node at a node location in the surgical tool and an antinode at an antinode location in the surgical tool.Type: GrantFiled: August 17, 2017Date of Patent: June 7, 2022Assignee: Cilag GmbH InternationalInventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
-
Patent number: 11179177Abstract: An ultrasonic surgical instrument includes a shaft assembly and an end effector. The end effector extends extending distally from the shaft assembly and includes an ultrasonic blade, a clamp arm, and a clamp pad. The clamp arm is movably secured relative to the ultrasonic blade and includes a mortise longitudinally extending therethrough. The clamp pad is connected to the clamp arm. The clamp arm includes a pad body and a tenon. The pad body extends in a longitudinal direction and is configured to compress a tissue toward the ultrasonic blade. The tenon is secured to the pad body and is received within the mortise. The tenon includes a rail, a support base, and a plurality of openings. The plurality of openings extends through at least one of the support base or the rail such that the tenon has a predetermined transverse spring rate longitudinally along the tenon.Type: GrantFiled: April 30, 2019Date of Patent: November 23, 2021Assignee: Cilag GmbH InternationalInventor: William A. Olson
-
Publication number: 20210196334Abstract: Disclosed is a surgical instrument with an end-effector adapted and configured to deliver a plurality of energy modalities to tissue at a distal end thereof. The energy modalities may be applied simultaneously, independently, or sequentially. A generator is electrically coupled to the surgical instrument and is configured to supply a plurality of energy modalities to the end-effector. In one aspect, the generator is configured to supply electrosurgical energy (e.g., monopolar or bipolar radio frequency (RF) energy) and ultrasonic energy to the end-effector to allow the end-effector to interact with the tissue. The energy modalities may be supplied to the end-effector by a single generator or multiple generators.Type: ApplicationFiled: May 29, 2020Publication date: July 1, 2021Inventors: John M. Sarley, Chad P. Boudreaux, Tyler N. Brehm, Ellen E. Burkart, Jeffrey D. Messerly, Craig N. Faller, Robert S. Bishop, Michael A. Keenan, William A. Olson, Richard W. Flaker, Frederick E. Shelton, IV, Frederick L. Estera, Bruce Brunson, JR., Guion Y. Lucas, Demetrius N. Harris, Stephen M. Leuck, Nina Mastroianni, John E. Brady, Wei Guo, Geoffrey S. Strobl, Joseph S. Salguero, Lauren M. Valente, Joseph H. Kemper
-
Publication number: 20210196351Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw, a clamp arm pad, and a cantilever electrode that is free to deflect. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. Also disclosed are configurations where the clamp arm includes a peripheral cantilever electrode and a clamp arm pad extending beyond the electrode, a floating cantilever electrode and a resilient clamp arm pad, an interlocked cantilever electrode plate and a clamp arm pad configured to receive the plate, a laterally deflectable cantilever electrode and a clamp arm pad extending beyond the electrode, and a flexible cantilever electrode and a clamp arm pad extending beyond the electrode.Type: ApplicationFiled: May 29, 2020Publication date: July 1, 2021Inventors: John M. Sarley, Chad P. Boudreaux, Tyler N. Brehm, Wei Guo, Ellen E. Burkart, Jeffrey D. Messerly, Craig N. Faller, Robert S. Bishop, Michael A. Keenan, William A. Olson, Richard W. Flaker, Frederick E. Shelton, IV
-
Patent number: 10828056Abstract: Various ultrasonic instruments are disclosed. The ultrasonic instruments include an ultrasonic waveguide acoustically coupled to an ultrasonic transducer. Several techniques for acoustically coupling the ultrasonic transducer to the ultrasonic waveguide are disclosed.Type: GrantFiled: August 17, 2017Date of Patent: November 10, 2020Assignee: Ethicon LLCInventors: Jeffrey D. Messerly, Benjamin D. Dickerson, Rafael J. Ruiz Ortiz, Ryan M. Asher, Joseph D. Dennis, Brian D. Black, Craig T. Davis, Mark E. Tebbe, Ion V. Nicolaescu, Frederick Estera, William A. Olson, Amelia Pierce, James Wilson, William D. Dannaher, Fajian Zhang, Foster B. Stulen
-
Publication number: 20200345390Abstract: An ultrasonic surgical instrument includes a shaft assembly and an end effector. The end effector extends extending distally from the shaft assembly and includes an ultrasonic blade, a clamp arm, and a clamp pad. The clamp arm is movably secured relative to the ultrasonic blade and includes a mortise longitudinally extending therethrough. The clamp pad is connected to the clamp arm. The clamp arm includes a pad body and a tenon. The pad body extends in a longitudinal direction and is configured to compress a tissue toward the ultrasonic blade. The tenon is secured to the pad body and is received within the mortise. The tenon includes a rail, a support base, and a plurality of openings. The plurality of openings extends through at least one of the support base or the rail such that the tenon has a predetermined transverse spring rate longitudinally along the tenon.Type: ApplicationFiled: April 30, 2019Publication date: November 5, 2020Inventor: William A. Olson