Patents by Inventor William Andrew Burkland

William Andrew Burkland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8018704
    Abstract: A circuit breaker for a power controller integrated circuit is described where an analog timer and a digital timer are provided in parallel. The digital timer provides a fixed, on-chip maximum delay during an overcurrent condition to ensure the transistor will not be damaged. The analog timer allows the user to select an external capacitor or resistor to provide a delay time that is shorter than the time provided by the digital timer. Accordingly, the power controller retains all the flexibility of an analog timer but prevents the overcurrent exceeding a maximum time limit. An autoretry circuit is also included in the power controller which prevents the duty cycle from exceeding a maximum. The autoretry timer is a digital timer that uses the same oscillator as the digital timer for the circuit breaker so the ratio of the delay times is known and fixed.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: September 13, 2011
    Assignee: Micrel, Inc.
    Inventors: William Andrew Burkland, Adolfo A. Garcia
  • Patent number: 7940823
    Abstract: An accelerator circuit is incorporated in a laser diode system for accelerating the turn-on operation of the laser diode independent of the control loop bandwidth of the laser diode system. The accelerator circuit provides a boost current to a compensation capacitor upon laser turn-on which compensation capacitor operates to establish the control loop bandwidth of the laser diode system. The boost current enables the control loop to increase the bias current to the laser diode quickly. When the laser diode reaches the desired operating point, the boost current is terminated and the control loop of the laser diode system resumes normal control of the bias current. In one embodiment, the accelerator circuit includes a timer circuit controlling a current source to implement open loop turn-on control. In another embodiment, the accelerator circuit includes a comparator circuit working in conjunction with an one-shot logic circuit for providing close loop control.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: May 10, 2011
    Assignee: Micrel, Inc.
    Inventors: Douglas P. Anderson, Peter Chambers, Joseph J. Judkins, III, William Andrew Burkland
  • Patent number: 7865754
    Abstract: A power budget monitoring circuit in a multi-port PSE includes a differential amplifier and a transistor for setting a reference voltage across a first resistor to establish a reference current, multiple current mirror output devices each associated with a power port of the PSE, a second resistor and a comparator. Each current mirror output device provides an output current indicative of the power demanded by the associated power port where the output currents are summed at a second node into a monitor current. The second resistor has a resistance value proportional to a maximum power budget of the PSE and receives the monitor current. A monitor voltage develops across the second resistor indicative of the total power demanded by the power ports. The comparator compares the monitor voltage to the reference voltage and provides a comparator output signal indicating whether the maximum power budget of the PSE has been exceeded.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: January 4, 2011
    Assignee: Micrel, Inc.
    Inventors: William Andrew Burkland, Douglas Paul Anderson
  • Patent number: 7624303
    Abstract: A power controller system is described herein, which may consist of one or more power controller ICs and other components. Each power controller selectively couples power supply voltages to a plurality of electrical devices, such as cards that have been inserted into expansion slots in a server. To simplify processing by a system processor monitoring the health of the power subsystem, each power controller IC asserts a power-good signal at a power-good terminal only if the operating conditions for all channels are satisfactory. A power good signal is generated even if a channel is not supplying power to a channel due to a card retention switch signal not being asserted or the channel is not enabled. The power-good signals from all power controllers in the system are then ANDed together to determine if any of the power controllers are experiencing unsatisfactory conditions.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: November 24, 2009
    Assignee: Micrel, Inc.
    Inventors: William Andrew Burkland, Adolfo A. Garcia
  • Patent number: 7590890
    Abstract: A power controller system is described herein, where a power-good signal (PWRGD) is asserted followed by a slightly delayed power-good signal (DLY_PWRGD) upon the system powering up. This PWRGD signal indicates that good power is being supplied to the card or other equipment, and the delayed signal tells a system processor that it is now ok to communicate with the card or other equipment. This delay allows the card or other equipment to reach a steady state condition before being declared operational by the power controller. When powering down the equipment, the DLY_PWRGD signal is first deasserted and power is decoupled from the card or other equipment. The PWRGD signal is then deasserted after a short delay. This short delay allows circuitry within the card to be properly shut down by, for example, carrying out a shutdown routine, using stored charge in the card to temporarily power the card. A state machine is used to carry out the four-state power up and power down sequence.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: September 15, 2009
    Assignee: Micrel, Inc.
    Inventors: William Andrew Burkland, Adolfo A. Garcia
  • Publication number: 20090190621
    Abstract: An accelerator circuit is incorporated in a laser diode system for accelerating the turn-on operation of the laser diode independent of the control loop bandwidth of the laser diode system. The accelerator circuit provides a boost current to a compensation capacitor upon laser turn-on which compensation capacitor operates to establish the control loop bandwidth of the laser diode system. The boost current enables the control loop to increase the bias current to the laser diode quickly. When the laser diode reaches the desired operating point, the boost current is terminated and the control loop of the laser diode system resumes normal control of the bias current. In one embodiment, the accelerator circuit includes a timer circuit controlling a current source to implement open loop turn-on control. In another embodiment, the accelerator circuit includes a comparator circuit working in conjunction with an one-shot logic circuit for providing close loop control.
    Type: Application
    Filed: April 1, 2009
    Publication date: July 30, 2009
    Applicant: MICREL, INC.
    Inventors: Douglas P. Anderson, Peter Chambers, Joseph J. Judkins, III, William Andrew Burkland
  • Patent number: 7532653
    Abstract: An accelerator circuit is incorporated in a laser diode system for accelerating the turn-on operation of the laser diode independent of the control loop bandwidth of the laser diode system. The accelerator circuit provides a boost current to a compensation capacitor upon laser turn-on which compensation capacitor operates to establish the control loop bandwidth of the laser diode system. The boost current enables the control loop to increase the bias current to the laser diode quickly. When the laser diode reaches the desired operating point, the boost current is terminated and the control loop of the laser diode system resumes normal control of the bias current. In one embodiment, the accelerator circuit includes a timer circuit controlling a current source to implement open loop turn-on control. In another embodiment, the accelerator circuit includes a comparator circuit working in conjunction with an one-shot logic circuit for providing close loop control.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: May 12, 2009
    Assignee: Micrel, Inc.
    Inventors: Douglas P. Anderson, Peter Chambers, Joseph J. Judkins, III, William Andrew Burkland
  • Publication number: 20090055672
    Abstract: A power budget monitoring circuit in a multi-port PSE includes a differential amplifier and a transistor for setting a reference voltage across a first resistor to establish a reference current, multiple current mirror output devices each associated with a power port of the PSE, a second resistor and a comparator. Each current mirror output device provides an output current indicative of the power demanded by the associated power port where the output currents are summed at a second node into a monitor current. The second resistor has a resistance value proportional to a maximum power budget of the PSE and receives the monitor current. A monitor voltage develops across the second resistor indicative of the total power demanded by the power ports. The comparator compares the monitor voltage to the reference voltage and provides a comparator output signal indicating whether the maximum power budget of the PSE has been exceeded.
    Type: Application
    Filed: October 2, 2007
    Publication date: February 26, 2009
    Applicant: MICREL, INC.
    Inventors: William Andrew Burkland, Douglas Paul Anderson
  • Publication number: 20080126814
    Abstract: A power controller system is described herein, where a power-good signal (PWRGD) is asserted followed by a slightly delayed power-good signal (DLY_PWRGD) upon the system powering up. This PWRGD signal indicates that good power is being supplied to the card or other equipment, and the delayed signal tells a system processor that it is now ok to communicate with the card or other equipment. This delay allows the card or other equipment to reach a steady state condition before being declared operational by the power controller. When powering down the equipment, the DLY_PWRGD signal is first deasserted and power is decoupled from the card or other equipment. The PWRGD signal is then deasserted after a short delay. This short delay allows circuitry within the card to be properly shut down by, for example, carrying out a shutdown routine, using stored charge in the card to temporarily power the card. A state machine is used to carry out the four-state power up and power down sequence.
    Type: Application
    Filed: August 23, 2006
    Publication date: May 29, 2008
    Applicant: MICREL, INC.
    Inventors: William Andrew Burkland, Adolfo A. Garcia
  • Publication number: 20080055808
    Abstract: A circuit breaker for a power controller integrated circuit is described where an analog timer and a digital timer are provided in parallel. The digital timer provides a fixed, on-chip maximum delay during an overcurrent condition to ensure the transistor will not be damaged. The analog timer allows the user to select an external capacitor or resistor to provide a delay time that is shorter than the time provided by the digital timer. Accordingly, the power controller retains all the flexibility of an analog timer but prevents the overcurrent exceeding a maximum time limit. An autoretry circuit is also included in the power controller which prevents the duty cycle from exceeding a maximum. The autoretry timer is a digital timer that uses the same oscillator as the digital timer for the circuit breaker so the ratio of the delay times is known fixed.
    Type: Application
    Filed: August 23, 2006
    Publication date: March 6, 2008
    Applicant: MICREL, INC.
    Inventors: William Andrew Burkland, Adolfo A. Garcia
  • Publication number: 20080048665
    Abstract: A power controller system is described herein, which may consist of one or more power controller ICs and other components. Each power controller selectively couples power supply voltages to a plurality of electrical devices, such as cards that have been inserted into expansion slots in a server. To simplify processing by a system processor monitoring the health of the power subsystem, each power controller IC asserts a power-good signal at a power-good terminal only if the operating conditions for all channels are satisfactory. A power good signal is generated even if a channel is not supplying power to a channel due to a card retention switch signal not being asserted or the channel is not enabled. The power-good signals from all power controllers in the system are then ANDed together to determine if any of the power controllers are experiencing unsatisfactory conditions.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Applicant: MICREL INC.
    Inventors: William Andrew Burkland, Adolfo A. Garcia
  • Patent number: 7292084
    Abstract: A timer circuit includes a current mirror, a capacitor, a first switch, a resistor and a comparator. The current mirror receives a reference current and provides first and second currents with a predefined current ratio. The capacitor receives the first current as a sinking current or as a sourcing current. The first switch, controlled by a control signal, allows the capacitor to be charged by the first current or be discharged. The resistor is biased by the second current to provide an adaptive reference voltage. The comparator compares the voltage across the capacitor and the adaptive reference voltage and triggers an output signal when the capacitor voltage is increased to the adaptive reference voltage.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: November 6, 2007
    Assignee: Micrel, Incorporated
    Inventors: Boris Briskin, William Andrew Burkland
  • Patent number: 7203213
    Abstract: An accelerator circuit is incorporated in a laser diode system for accelerating the turn-on operation of the laser diode independent of the control loop bandwidth of the laser diode system. The accelerator circuit provides a boost current to a compensation capacitor upon laser turn-on which compensation capacitor operates to establish the control loop bandwidth of the laser diode system. The boost current enables the control loop to increase the bias current to the laser diode quickly. When the laser diode reaches the desired operating point, the boost current is terminated and the control loop of the laser diode system resumes normal control of the bias current. In one embodiment, the accelerator circuit includes a timer circuit controlling a current source to implement open loop turn-on control. In another embodiment, the accelerator circuit includes a comparator circuit working in conjunction with an one-shot logic circuit for providing close loop control.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: April 10, 2007
    Assignee: Micrel, Incorporated
    Inventors: Douglas P. Anderson, Peter Chambers, Joseph J. Judkins, III, William Andrew Burkland
  • Patent number: 7138843
    Abstract: A timer circuit includes a current mirror, a capacitor, a first switch, a resistor and a comparator. The current mirror receives a reference current and provides first and second currents with a predefined current ratio. The first switch, controlled by a control signal, allows the capacitor to be charged by the first current or be discharged. The resistor is biased by the second current to provide an adaptive reference voltage. The comparator compares the voltage across the capacitor and the adaptive reference voltage and triggers an output signal when the capacitor voltage is increased to the adaptive reference voltage. Alternately, the timer circuit includes a pin for coupling to an external resistor and an open pin detector circuit to detect the presence of the external resistor and to automatically select the adaptive reference voltage if a resistor is present or an internal reference voltage if the resistor is absent.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: November 21, 2006
    Assignee: Micrel, Incorporated
    Inventors: Boris Briskin, William Andrew Burkland
  • Patent number: 6734704
    Abstract: A control circuit receives complementary logic signals ranging from Vdd to 0 VDC, and outputs a drive signal Vhs1 ranging from magnitude Vhv to Vhv+Vdd to control a high-side switch. The control circuit includes an Ibias generator and a level shift circuit that preferably includes a passive current sink mechanism, coupleable between Vdd and ground. The level shift circuit includes a totem-pole configuration of a PMOS device, an NMOS device, and an NMOS device that mirrors Ibias current. An additional NMOS device is provided, whose source node is coupled between the PMOS and NMOS devices in the totem-pole, whose gate node is coupled to Vdd, and whose drain node serves as an interface to the load circuit. A capacitor coupled across the current source hastens Vhs1 transition time. The PMOS and NMOS devices in the totem pole turn on and off complementarily responsive to the logic signals, which dictate the state of Vhs1.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: May 11, 2004
    Assignee: Micrel, Incorporated
    Inventor: William Andrew Burkland