Patents by Inventor William Arthur Hugh Steptoe

William Arthur Hugh Steptoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112413
    Abstract: A room manager can generate mappings for a real-world room that support a shared XR environment. For example, the real-world room can include real-world objects and surfaces, such as a table(s), chair(s), wall(s), door(s), window(s), etc. The room manager can generate XR object definitions based on information received about the real-world room, object(s), and surface(s). For example, the room manager can implement a flow that guides a user equipped with an XR system to provide information for the XR object definitions, such as real-world surfaces that map to the XR object(s), borders (e.g., measured using a component of the XR system), such as borders on real-world surfaces, semantic information (e.g., number of seat assignments at an XR table, size of XR objects, etc.), and other suitable information. Implementations generate previews of the shared XR environment, such as a local preview and a remote preview.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Björn WANBO, Michael James LEBEAU, William Arthur Hugh STEPTOE, Jonathan MALLINSON, Steven James WILSON, Vasanth Kumar RAJENDRAN, Vasyl BARAN
  • Publication number: 20240112412
    Abstract: A room manager can generate mappings for a real-world room that support a shared XR environment. For example, the real-world room can include real-world objects and surfaces, such as a table(s), chair(s), wall(s), door(s), window(s), etc. The room manager can generate XR object definitions based on information received about the real-world room, object(s), and surface(s). For example, the room manager can implement a flow that guides a user equipped with an XR system to provide information for the XR object definitions, such as real-world surfaces that map to the XR object(s), borders (e.g., measured using a component of the XR system), such as borders on real-world surfaces, semantic information (e.g., number of seat assignments at an XR table, size of XR objects, etc.), and other suitable information. Implementations generate previews of the shared XR environment, such as a local preview and a remote preview.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Björn WANBO, Michael James LEBEAU, William Arthur Hugh STEPTOE, Jonathan MALLINSON, Steven James WILSON, Vasanth Kumar RAJENDRAN, Vasyl BARAN
  • Publication number: 20240112414
    Abstract: A room manager can generate mappings for a real-world room that support a shared XR environment. For example, the real-world room can include real-world objects and surfaces, such as a table(s), chair(s), wall(s), door(s), window(s), etc. The room manager can generate XR object definitions based on information received about the real-world room, object(s), and surface(s). For example, the room manager can implement a flow that guides a user equipped with an XR system to provide information for the XR object definitions, such as real-world surfaces that map to the XR object(s), borders (e.g., measured using a component of the XR system), such as borders on real-world surfaces, semantic information (e.g., number of seat assignments at an XR table, size of XR objects, etc.), and other suitable information. Implementations generate previews of the shared XR environment, such as a local preview and a remote preview.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Björn WANBO, Michael James LEBEAU, William Arthur Hugh STEPTOE, Jonathan MALLINSON, Steven James WILSON, Vasanth Kumar RAJENDRAN, Vasyl BARAN
  • Patent number: 11902288
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: February 13, 2024
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Michael James Lebeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Björn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Publication number: 20240029329
    Abstract: Technology described herein is directed to mitigating avatar display disruption, in an artificial reality environment, resulting from losses in user tracking. The technology can use an artificial reality device to continually determine contextual characteristics of the user that can correspond to placements of one or more portions of the user's body with respect to another portion thereof and/or one or more real-world objects. A user state, corresponding to a contextual characteristic occurring at a time of an interruption in the tracking, can define a bodily configuration of the user that can be with respect to the one or more real-world objects when the interruption occurs. The technology can, according to an avatar pose assigned to the user state, animate the avatar to the assigned pose when the interruption occurs and immediately reinitiate animation from that pose upon regaining tracking of the user's pose.
    Type: Application
    Filed: July 19, 2022
    Publication date: January 25, 2024
    Inventors: William Arthur Hugh STEPTOE, Michael James LEBEAU, Alisa KURT, Raphael GUILLEMINOT
  • Publication number: 20230336593
    Abstract: In some implementations, the disclosed systems and methods can capture visual frames and an object manager can recognize a visual signal within the captured visual frames, such as a QR code. In some implementations, the disclosed systems and methods can participate in a private conference within a session.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: William Arthur Hugh STEPTOE, Michael James LEBEAU, Björn WANBO, Javier Alejandro Sierra SANTOS, Vasyl BARAN, Nils PLATH, James Anthony HUGHES, Ivan SHIROKOV, Yanni WANG, Jetsada MACHOM, Nikita STARKIN, Tarang SHRIVASTAVA, Snigdha SINGH, Yuge GONG, Paul Ffransis MILIAN, Peter James ALEXANDER, Ferdinand REDELINGHUYS
  • Patent number: 11770384
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: September 26, 2023
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Michael James Lebeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Björn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Publication number: 20230188533
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 15, 2023
    Applicant: Meta Platforms Technologies, LLC
    Inventors: Michael James LEBEAU, Manuel Ricardo FREIRE SANTOS, Aleksejs ANPILOGOVS, Alexander SORKINE HORNUNG, Björn WANBO, Connor TREACY, Fangwei LEE, Federico RUIZ, Jonathan MALLINSON, Jonathan Richard MAYOH, Marcus TANNER, Panya INVERSIN, Sarthak RAY, Sheng SHEN, William Arthur Hugh STEPTOE, Alessia MARRA, Gioacchino NORIS, Derrick READINGER, Jeffrey Wai-King LOCK, Jeffrey WITTHUHN, Jennifer Lynn SPURLOCK, Larissa Heike LAICH, Javier Alejandro Sierra SANTOS
  • Patent number: 11606364
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: March 14, 2023
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Michael James LeBeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Bjorn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Patent number: 11582245
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 14, 2023
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Michael James LeBeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Bjorn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Patent number: 11468616
    Abstract: The disclosed computer-implemented method may include identifying a set of action units (AUs) associated with a face of a user. Each AU may be associated with a muscle group engaged by the user to produce a viseme associated with a sound produced by the user. The method may also include, for each AU in the set of AUs, determining a set of AU parameters associated with the AU and the viseme. The set of AU parameters may include (1) an onset curve, and (2) a falloff curve. The method may also include (1) detecting that the user has produced the sound, and (2) directing a computer-generated avatar to produce the viseme in accordance with the set of AU parameters in response to detecting that the user is producing the sound. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: October 11, 2022
    Assignee: Meta Platforms Technologies, LLC
    Inventors: William Arthur Hugh Steptoe, Michael Andrew Howard, Melinda Ozel, Giovanni F. Nakpil, Timothy Naylor
  • Publication number: 20220172444
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Applicant: Facebook Technologies, LLC
    Inventors: Michael James LEBEAU, Manuel Ricardo FREIRE SANTOS, Aleksejs ANPILOGOVS, Alexander SORKINE HORNUNG, Björn WANBO, Connor TREACY, Fangwei LEE, Federico RUIZ, Jonathan MALLINSON, Jonathan Richard MAYOH, Marcus TANNER, Panya INVERSIN, Sarthak RAY, Sheng SHEN, William Arthur Hugh STEPTOE, Alessia MARRA, Gioacchino NORIS, Derrick READINGER, Jeffrey Wai-King LOCK, Jeffrey WITTHUHN, Jennifer Lynn SPURLOCK, Larissa Heike LAICH, Javier Alejandro Sierra SANTOS
  • Patent number: 11302085
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: April 12, 2022
    Assignee: Facebook Technologies, LLC
    Inventors: Michael James LeBeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Bjorn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Publication number: 20220086167
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Application
    Filed: October 30, 2020
    Publication date: March 17, 2022
    Inventors: Michael James LeBeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Bjorn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Publication number: 20220084288
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Application
    Filed: October 30, 2020
    Publication date: March 17, 2022
    Inventors: Michael James LeBeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Bjorn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Publication number: 20220086205
    Abstract: Aspects of the present disclosure are directed to creating and administering artificial reality collaborative working environments and providing interaction modes for them. An XR work system can provide and control such artificial reality collaborative working environments to enable, for example, A) links between real-world surfaces and XR surfaces; B) links between multiple real-world areas to XR areas with dedicated functionality; C) maintaining access, while inside the artificial reality working environment, to real-world work tools such as the user's computer screen and keyboard; D) various hand and controller modes for different interaction and collaboration modalities; E) use-based, multi-desk collaborative room configurations; and F) context-based auto population of users and content items into the artificial reality working environment.
    Type: Application
    Filed: October 30, 2020
    Publication date: March 17, 2022
    Inventors: Michael James LeBeau, Manuel Ricardo Freire Santos, Aleksejs Anpilogovs, Alexander Sorkine Hornung, Bjorn Wanbo, Connor Treacy, Fangwei Lee, Federico Ruiz, Jonathan Mallinson, Jonathan Richard Mayoh, Marcus Tanner, Panya Inversin, Sarthak Ray, Sheng Shen, William Arthur Hugh Steptoe, Alessia Marra, Gioacchino Noris, Derrick Readinger, Jeffrey Wai-King Lock, Jeffrey Witthuhn, Jennifer Lynn Spurlock, Larissa Heike Laich, Javier Alejandro Sierra Santos
  • Patent number: 11270487
    Abstract: The disclosed computer-implemented method may include identifying a muscle group engaged by a user to execute a predefined body action by (1) capturing a set of images of the user while the user executes the predefined body action, and (2) associating a feature of a body of the user with the muscle group based on the predefined body action and the set of images. The method may also include determining, based on the set of images, a set of parameters associated with the user, the muscle group, and the predefined body action. The method may also include directing a computer-generated avatar that represents the body of the user to produce the predefined body action in accordance with the set of parameters. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 8, 2022
    Assignee: Facebook Technologies, LLC
    Inventors: William Arthur Hugh Steptoe, Michael Andrew Howard, Melinda Ozel, Giovanni F. Nakpil, Timothy Naylor
  • Patent number: 10747302
    Abstract: In one embodiment, a method includes displaying a horizontal screen visible to a user through a display, determining a horizontal distance between a position of the user and the horizontal screen, determining a vertical distance between a controller associated with the user and the horizontal screen, creating an interaction screen, where the interaction screen and the horizontal screen intersect in a closest point, where the interaction screen is tilted toward the user from the horizontal screen by an angle, detecting a first event that a ray cast from a virtual representation of the controller hits a first point on the interaction screen, translating the first event to a second event that the ray cast hits a second point on the horizontal screen, and displaying a curved line from the controller to the second point on the horizontal screen that is visible to the user through the display.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 18, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: William Arthur Hugh Steptoe, Jonathan Ravasz, Michael James LeBeau
  • Patent number: 10592104
    Abstract: In one embodiment, a method includes displaying a virtual keyboard at a first position within a virtual scene that is visible to a user through a display, detecting that the user touches a first point on a trackpad of a controller that is associated with the display, re-positioning, in response to the detection, the virtual keyboard from the first position to a second position, where the second position is determined based on the first point on the trackpad, and displaying, in response to the detection, a pointing indicator, where the pointing indicator is displayed on top of the virtual keyboard, and where the pointing indicator represents that an area of the virtual keyboard indicated by the pointing indicator is being pointed by the user.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 17, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: William Arthur Hugh Steptoe, Jonathan Ravasz, Michael James LeBeau
  • Publication number: 20190377406
    Abstract: In one embodiment, a method includes displaying a horizontal screen visible to a user through a display, determining a horizontal distance between a position of the user and the horizontal screen, determining a vertical distance between a controller associated with the user and the horizontal screen, creating an interaction screen, where the interaction screen and the horizontal screen intersect in a closest point, where the interaction screen is tilted toward the user from the horizontal screen by an angle, detecting a first event that a ray cast from a virtual representation of the controller hits a first point on the interaction screen, translating the first event to a second event that the ray cast hits a second point on the horizontal screen, and displaying a curved line from the controller to the second point on the horizontal screen that is visible to the user through the display.
    Type: Application
    Filed: June 8, 2018
    Publication date: December 12, 2019
    Inventors: William Arthur Hugh Steptoe, Jonathan Ravasz, Michael James LeBeau