Patents by Inventor William B. Euler

William B. Euler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932558
    Abstract: A piezoelectric polymer used as a piezocatalyst, and methods of manufacture and use therefor. A preferred piezoelectric polymer is poly(vinylidene difluoride) (PVDF) due to its piezoelectric response and good flexibility. The polymer can be doped with a metal, metal salt, metal carbonyl, metal oxide such as ZnO, Co2O3, or TiO2, or ion such as Cr3+, Co2+, or Zn2+. The dopant can be chosen so that when the polymer is PVDF the dopant increases the amount of ?-phase PVDF and/or ?-phase PVDF relative to ?-phase PVDF, thereby increasing the piezocatalytic response of the polymer. The compound to be decomposed can be adsorbed on the surface of the piezoelectric polymer. Applications include wastewater treatment, CO2 capture and reduction, hydroformylation, water splitting, and ammonia synthesis.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: March 19, 2024
    Assignee: University of Rhode Island Board of Trustees
    Inventors: William B. Euler, Angela Thach, Lasanthi Sumathirathne, Benjamin B. Cromwell, Mara Dubnicka
  • Patent number: 10371688
    Abstract: A sensing system for explosives is provided. The sensor is based on a layered structure of approximately a monolayer of a fluorophore deposited onto a few nm of a transparent polymer, supported by a substrate. The fluorophores can be xanthene laser dyes, which have high quantum yields, and the polymers can be commodity materials polymethylmethacrylate and polyvinylidene difluoride. The different fluorophore/polymer combinations give different emission responses to analytes, including both signal quenching and enhancement. The pattern of responses can be used to identify the analyte. The common explosives TNT, PETN, RDX, HMX, and TATP as gas phase species can all be uniquely identified at room temperature using only the natural vapor pressure of the explosive to deliver sample to the sensor.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: August 6, 2019
    Inventor: William B. Euler
  • Publication number: 20170227515
    Abstract: A sensing system for explosives is provided. The sensor is based on a layered structure of approximately a monolayer of a fluorophore deposited onto a few nm of a transparent polymer, supported by a substrate. The fluorophores can be xanthene laser dyes, which have high quantum yields, and the polymers can be commodity materials polymethylmethacrylate and polyvinylidene difluoride. The different fluorophore/polymer combinations give different emission responses to analytes, including both signal quenching and enhancement. The pattern of responses can be used to identify the analyte. The common explosives TNT, PETN, RDX, HMX, and TATP as gas phase species can all be uniquely identified at room temperature using only the natural vapor pressure of the explosive to deliver sample to the sensor.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 10, 2017
    Inventor: William B. Euler
  • Publication number: 20110248224
    Abstract: A thermal indicator material which comprises a plurality of polythiophenes having a second low temperature color and a high temperature color. The polythiophenes are structured and arranged to exhibit a color change from the second low temperature color to the high temperature color when the thermal indicator material is exposed to a temperature that meets or exceeds a predetermined temperature and to exhibit a color change from the high temperature color to a first low temperature color when the thermal indicator material is exposed to a decline in temperature from a temperature that meets or exceeds the predetermined temperature to a temperature of within the range of between about 5 to 20° C. below the pre-determined temperature that occurs in a time period of greater than 2.0 seconds.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 13, 2011
    Inventors: Brett Lucht, William B. Euler, Yu Wang
  • Patent number: 7943063
    Abstract: A thermal indicator material which comprises a plurality of polythiophenes having a second low temperature color and a high temperature color. The polythiophenes are structured and arranged to exhibit a color change from the second low temperature color to the high temperature color when the thermal indicator material is exposed to a temperature that meets or exceeds a pre-determined temperature and to exhibit a color change from the high temperature color to a first low temperature color when the thermal indicator material is exposed to a decline in temperature from a temperature that meets or exceeds the predetermined temperature to a temperature of within the range of between about 5 to 20° C. below the pre-determined temperature that occurs in a time period of greater than 2.0 seconds.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: May 17, 2011
    Assignee: The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Brett Lucht, William B. Euler, Yu Wang
  • Patent number: 7833438
    Abstract: The invention is directed to use of polythiophenes in a method to determine the genuineness of an article which method comprises providing an article treated with a composition comprised of a polythiophene, the polythiophene having a low temperature color and a weak fluorescence and the structure of the polythiophene being designed such that when the composition is placed in a heat-exchange relationship with the article, the low temperature color will change to a high temperature color and the weak fluorescence will change to a strong fluorescence when a pre-determined temperature is met or exceeded in the article, heating the article to a temperature that meets or exceeds the pre-determined temperature and detecting the color and the fluorescence change.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: November 16, 2010
    Assignee: The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Brett L. Lucht, William B. Euler, Yu Wang, Nadia Archambault
  • Publication number: 20090302277
    Abstract: A thermal indicator material which comprises a plurality of polythiophenes having a second low temperature color and a high temperature color. The polythiophenes are structured and arranged to exhibit a color change from the second low temperature color to the high temperature color when the thermal indicator material is exposed to a temperature that meets or exceeds a pre-determined temperature and to exhibit a color change from the high temperature color to a first low temperature color when the thermal indicator material is exposed to a decline in temperature from a temperature that meets or exceeds the predetermined temperature to a temperature of within the range of between about 5 to 20° C. below the pre-determined temperature that occurs in a time period of greater than 2.0 seconds.
    Type: Application
    Filed: March 16, 2009
    Publication date: December 10, 2009
    Inventors: Brett Lucht, William B. Euler, Yu Wang
  • Patent number: 7618838
    Abstract: A method for forming a photovoltaic cell which includes forming a nanostructured layer in a semiconductor material having a plurality of pores opening onto a surface, the plurality of pores having a depth greater than about 1 micron and a diameter between about 5 nanometers and about 1,200 nanometers, and disposing an organic charge-transfer material in the pores of the nanostructured layer. A first electrode is attached to the semiconductor material, and a second electrode is attached to the organic charge-transfer material. The semiconductor material has a thickness between about 5 microns and about 700 microns. Desirably, the nanostructured layer has a porosity of less than the porosity corresponding to the percolation threshold, and the organic charge-transfer material extends at least about 100 nm from the surface of the nanostructured layer.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: November 17, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Igor A. Levitsky, William B. Euler, Natalya A. Tokranova, Bai Xu, James Castracane
  • Publication number: 20090278090
    Abstract: Provided herein are novel polythiophene compounds having polyalkoxyl sidechains and low temperature irreversible upon activation (IUA) thermochromic compounds/compositions thereof. The IUA thermochromic compounds or compositions are activated and exhibit an IUA color by heating to or above a reversible thermochromic transition temperature (RTTT) and cooling to or below an irreversible thermochromic transition temperature (IRTTT) in less than 2 seconds. The activated IUA thermochromic compounds or compositions will retain their IUA color as long as the compounds or compositions are kept at or below about 5° C. below the IRTTT. The activated IUA thermochromic compounds or compositions will be deactivated and show a different color upon exposure to a temperature equal to or higher than about 5° C. below the IRTTT unless the compounds or compositions are activated again.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Inventors: Brett L. Lucht, William B. Euler
  • Patent number: 7517475
    Abstract: A thermal indicator material which comprises a plurality of polythiophenes having a second low temperature color and a high temperature color. The polythiophenes are structured and arranged to exhibit a color change from the second low temperature color to the high temperature color when the thermal indicator material is exposed to a temperature that meets or exceeds a pre-determined temperature and to exhibit a color change from the high temperature color to a first low temperature color when the thermal indicator material is exposed to a decline in temperature from a temperature that meets or exceeds the predetermined temperature to a temperature of within the range of between about 5 to 20° C. below the pre-determined temperature that occurs in a time period of greater than 2.0 seconds.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: April 14, 2009
    Assignee: The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Brett Lucht, William B. Euler, Yu Wang
  • Patent number: 6850315
    Abstract: The invention relates to polymeric/semiconductor thin film strain gauges comprising visible light from spectrometer (10) which is directed onto a thin film passive sensor (12) having a transparent glass substrate (14) and a laminated construction in succession from the substrate (14), of a polyimide layer(18a) a polysiloxane layer (16a) filled with alumina particles, a polyimide layer (18b) and a polysiloxane layer (16b) filled with alumina particles.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: February 1, 2005
    Assignee: The Board of Governors for Higher Education State of Rhode Island and Providence Plantations
    Inventors: William B. Euler, Otto J. Gregory, Gregg S. Huston
  • Patent number: 6706218
    Abstract: A thermochromic polymer-based temperature indicator composition which comprises a polythiophene and a carrier medium. The composition is characterized in that the polythiophene is present in the medium in an amount of about 0.05 to about 5.0% by weight based on the total weight of the composition. The structure of the compound is designed such that when the composition is placed in a heat-exchange relationship with an article, the composition will exhibit a color change when a design temperature or a temperature beyond the design temperature is reached in the article.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: March 16, 2004
    Assignee: The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Brett L. Lucht, William B. Euler, Otto J. Gregory
  • Publication number: 20020149003
    Abstract: A thermochromic polymer-based temperature indicator composition which comprises a polythiophene and a carrier medium. The composition is characterized in that the polythiophene is present in the medium in an amount of about 0.05 to about 5.0% by weight based on the total weight of the composition. The structure of the compound is designed such that when the composition is placed in a heat-exchange relationship with an article, the composition will exhibit a color change when a design temperature or a temperature beyond the design temperature is reached in the article.
    Type: Application
    Filed: January 10, 2001
    Publication date: October 17, 2002
    Inventors: Brett L. Lucht, William B. Euler, Otto J. Gregory