Patents by Inventor William B. King

William B. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127206
    Abstract: An ATM is configured to interact with a mobile device and provide user access to one or more of the banking services available at the ATM using the mobile device. Banking-related information may be viewed and/or input at the ATM using the mobile device. The ATM may have multiple vertical levels of deposit slots, withdrawal trays and/or receipt dispensers. A level at the ATM at which the user interacts with the ATM for deposits, withdrawals, or receipts may be selected. The level may be specified by the user of the mobile device, at the ATM or using the mobile device, or may be determined by the ATM.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Arjun Thimmareddy, Bryan T. King, Alexander S. Lee, Vaishnavi Varma, Tony Aidoo, Paula M. Booze, Ramesh B. Chandanala, William R. Conrad, Juliet Abdul-Aziz, Gerard P. Gay
  • Patent number: 11948136
    Abstract: An ATM is configured to interact with a mobile device and provide user access to one or more of the banking services available at the ATM using the mobile device. Banking-related information may be viewed and/or input at the ATM using the mobile device. The ATM may have multiple vertical levels of deposit slots, withdrawal trays and/or receipt dispensers. A level at the ATM at which the user interacts with the ATM for deposits, withdrawals, or receipts may be selected. The level may be specified by the user of the mobile device, at the ATM or using the mobile device, or may be determined by the ATM.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: April 2, 2024
    Assignee: Bank of America Corporation
    Inventors: Arjun Thimmareddy, Bryan T. King, Alexander S. Lee, Vaishnavi Varma, Tony Aidoo, Paula M. Booze, Ramesh B. Chandanala, William R. Conrad, Juliet Abdul-Aziz, Gerard P. Gay
  • Publication number: 20240104533
    Abstract: A screen-less automated teller machine (ATM) may be configured to interact with a mobile device. The ATM may automatically detect the presence of the mobile device in a vicinity of the ATM and initiate contact with the mobile device, or a mobile device may initiate contact with the ATM. After verifying user permission to access the ATM, the mobile device may be enabled to provide user access to one or more of the banking services available at the ATM using the mobile device. As the ATM is screen-less, banking-related information may be viewed and/or input at the ATM using the mobile device. An application on the mobile device may be used to access and interact with the ATM using the mobile device.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Inventors: Arjun Thimmareddy, Bryan T. King, Alexander S. Lee, Vaishnavi Varma, Tony Aidoo, Paula M. Booze, Ramesh B. Chandanala, William R. Conrad, Juliet Abdul-Aziz, Gerard P. Gay
  • Publication number: 20240095698
    Abstract: Methods for banking at an automated teller machine (ATM) using a mobile device. The ATM may automatically detect the presence of the mobile device in a vicinity of the ATM and initiate contact with the mobile device, or a mobile device may initiate contact with the ATM. After verifying user permission to access the ATM, the mobile device may be enabled to provide user access to one or more of the banking services available at the ATM using the mobile device and to view banking-related information on the mobile device. A mobile application on the mobile device may be used to access the ATM using the mobile device. While a mobile device is accessing the ATM, a screen on the ATM may become inactive for banking services and the option to select banking services directly at the ATM may be disabled.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 21, 2024
    Inventors: Arjun Thimmareddy, Bryan T. King, Alexander S. Lee, Vaishnavi Varma, Tony Aidoo, Paula M. Booze, Ramesh B. Chandanala, William R. Conrad, Juliet Abdul-Aziz, Gerard P. Gay
  • Patent number: 8792163
    Abstract: In one or more embodiments, a beam control apparatus and method for correcting aberrations include an off-aperture telescope configured to receive a beam of electromagnetic energy, wherein the telescope includes a first optical element and a second optical element. The second optical element is configured to be translated in three orthogonal axes, and a wavefront error sensor is configured to detect aberrations in the beam and to provide a wavefront error signal in response thereto. A processor is configured to provide a correction signal in response to the wavefront error signal, and an actuator is coupled to the second optical element and configured, in response to the wavefront error signal, to selectively translate the second optical element in one or more of three substantially orthogonal directions corresponding to the three orthogonal axes.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 29, 2014
    Assignee: Raytheon Company
    Inventors: William B. King, Chungte W. Chen, Robert W. Byren, Lacy G. Cook
  • Patent number: 8748857
    Abstract: An off-axis telescope having a primary optical element configured to reflect an energy beam from an optical reference source that emits the energy beam along an optical path. The telescope includes angle sensors arranged on a periphery of the primary optical element to determine angular motion of the energy beam from the optical reference source. The angle sensors are operable to be biased to positional settings associated with a desired pointing direction of the energy beam. A secondary optical element is arranged in the optical path and translated along three orthogonal axes. A plurality of steering mirrors arranged between the optical reference source and the secondary optical element is configured to be tilted in response to a control signal. A controller auto-aligns the telescope by at least translating the secondary optical element and tilting the steering mirrors via the control signal using at least inputs from the plurality of angle sensors.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: June 10, 2014
    Assignee: Raytheon Company
    Inventors: William B. King, Peter V. Messina, Ronald George Hegg, Chaunchy F. McKearn
  • Patent number: 8731013
    Abstract: A system and method for providing a wavefront corrected high-energy beam of electromagnetic energy. In the illustrative embodiment, the system includes a source of a first beam of electromagnetic energy; an amplifier for amplifying said beam to provide a second beam; a sensor for sensing aberration in said second beam and providing an error signal in response thereto; a processor for processing said error signal and providing a correction signal in response thereto; and a spatial light modulator responsive to said correction signal for adjusting said beam to facilitate a correction of said aberration thereof. In more specific embodiments, the source is a laser and the sensor is a laser wavefront sensor. A mirror is disposed between said modulator and said sensor for sampling said beam. The mirror has an optical thin-film dielectric coating on at least one optical surface thereof. The coating is effective to sample said beam and transmit a low power sample thereof to said means for sensing aberration.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: May 20, 2014
    Assignee: Raytheon Company
    Inventors: Robert W. Byren, William B. King, David M. Filgas
  • Patent number: 8654314
    Abstract: The system includes a rotary turret platform for aiming of a high power laser beam. The system further includes a turret payload device coupled to the rotary turret platform. The system further includes an off-axis telescope coupled to the turret payload, having an articulated secondary mirror for correcting optical aberrations, and configured to reflect the high power laser beam to a target through a first of at least two conformal windows. The system further includes an illuminator beam device configured to actively illuminating the target to generate a return aberrated wavefront through the first of the at least two conformal windows. The system further includes a coarse tracker coupled to the turret payload, positioned parallel to and on an axis of revolution of the off-axis telescope, and configured to detect, acquire, and track the target through the second of the at least two conformal windows.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: February 18, 2014
    Assignee: Raytheon Company
    Inventors: William B. King, John D. Isker, Chaunchy F. Mckearn, Eric J. Griffin
  • Patent number: 8635938
    Abstract: The technology can include a retractable rotary turret system. The system includes a base comprising two support arms. The system further includes a turret platform that is a truncated sphere having a substantially flat side and a substantially spherical side. The turret platform includes a turret support ring rotary coupled to the two support arms and a turret device isolatively coupled to the turret support ring. The turret platform is rotatable along a first dimension for deployment of the spherical side and is rotatable along the first dimension for deployment of the flat side.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 28, 2014
    Assignee: Raytheon Company
    Inventors: William B. King, John D. Isker, Chaunchy F. Mckearn, Eric J. Griffin
  • Patent number: 8362410
    Abstract: A high-energy beam is precompensated by a process including receiving a high-energy beam from a source and energy from a target. The target energy includes wavefront aberrations related to atmospheric and other external disturbances encountered along a distance separating the target. A correction signal is determined responsive to the high-energy beam and the target energy. The correction signal is also configured to pre-compensate for wavefront aberrations related to the atmospheric and other external disturbances and to cancel aberrations introduced by the adaptive optics techniques. A wavefront of the outcoupled high-energy beam is adjusted responsive to the determined correction signal. A beam control system includes three adaptive optics servo loops and an aperture-sharing element.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: January 29, 2013
    Assignee: Raytheon Company
    Inventors: William B. King, Chaunchy F. Mckearn
  • Publication number: 20120298839
    Abstract: The technology can include a high power laser beam delivery system. The system includes a rotary turret platform rotatable along multiple axes for aiming of a high power laser beam. The system further includes a turret payload device coupled to the rotary turret platform that is a truncated sphere and configured to rapidly deploy from a vehicle and stow within the vehicle. The system further includes at least two conformal windows in a spherical side of the turret payload. The system further includes an off-axis telescope coupled to the turret payload, having an articulated secondary mirror for correcting optical aberrations, and configured to reflect the high power laser beam to a target through the first of the at least two conformal windows.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: William B. King, John D. Isker, Chaunchy F. Mckearn, Eric J. Griffin
  • Publication number: 20120297969
    Abstract: The technology can include a retractable rotary turret system. The system includes a base comprising two support arms. The system further includes a turret platform that is a truncated sphere having a substantially flat side and a substantially spherical side. The turret platform includes a turret support ring rotary coupled to the two support arms and a turret device isolatively coupled to the turret support ring. The turret platform is rotatable along a first dimension for deployment of the spherical side and is rotatable along the first dimension for deployment of the flat side.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: William B. King, John D. Isker, Chaunchy F. Mckearn, Eric J. Griffin
  • Publication number: 20120049040
    Abstract: An off-axis telescope having a primary optical element configured to reflect an energy beam from an optical reference source that emits the energy beam along an optical path. The telescope includes angle sensors arranged on a periphery of the primary optical element to determine angular motion of the energy beam from the optical reference source. The angle sensors are operable to be biased to positional settings associated with a desired pointing direction of the energy beam. A secondary optical element is arranged in the optical path and translated along three orthogonal axes. A plurality of steering mirrors arranged between the optical reference source and the secondary optical element is configured to be tilted in response to a control signal. A controller auto-aligns the telescope by at least translating the secondary optical element and tilting the steering mirrors via the control signal using at least inputs from the plurality of angle sensors.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: William B. KING, Peter V. MESSINA, Ronald George HEGG, Chaunchy F. McKEARN
  • Publication number: 20120018614
    Abstract: A high-energy beam is precompensated by a process including receiving a high-energy beam from a source and energy from a target. The target energy includes wavefront aberrations related to atmospheric and other external disturbances encountered along a distance separating the target. A correction signal is determined responsive to the high-energy beam and the target energy. The correction signal is also configured to pre-compensate for wavefront aberrations related to the atmospheric and other external disturbances and to cancel aberrations introduced by the adaptive optics techniques. A wavefront of the outcoupled high-energy beam is adjusted responsive to the determined correction signal. A beam control system includes three adaptive optics servo loops and an aperture-sharing element.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: Raytheon Company
    Inventors: William B. King, Chaunchy F. Mckearn
  • Publication number: 20110228386
    Abstract: In one or more embodiments, a beam control apparatus and method for correcting aberrations include an off-aperture telescope configured to receive a beam of electromagnetic energy, wherein the telescope includes a first optical element and a second optical element. The second optical element is configured to be translated in three orthogonal axes, and a wavefront error sensor is configured to detect aberrations in the beam and to provide a wavefront error signal in response thereto. A processor is configured to provide a correction signal in response to the wavefront error signal, and an actuator is coupled to the second optical element and configured, in response to the wavefront error signal, to selectively translate the second optical element in one or more of three substantially orthogonal directions corresponding to the three orthogonal axes.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 22, 2011
    Applicant: RAYTHEON COMPANY
    Inventors: William B. KING, Chungte W. CHEN, Robert W. BYREN, Lacy G. COOK
  • Publication number: 20100232007
    Abstract: A system and method for providing a wavefront corrected high-energy beam of electromagnetic energy. In the illustrative embodiment, the system includes a source of a first beam of electromagnetic energy; an amplifier for amplifying said beam to provide a second beam; a sensor for sensing aberration in said second beam and providing an error signal in response thereto; a processor for processing said error signal and providing a correction signal in response thereto; and a spatial light modulator responsive to said correction signal for adjusting said beam to facilitate a correction of said aberration thereof. In more specific embodiments, the source is a laser and the sensor is a laser wavefront sensor. A mirror is disposed between said modulator and said sensor for sampling said beam. The mirror has an optical thin-film dielectric coating on at least one optical surface thereof. The coating is effective to sample said beam and transmit a low power sample thereof to said means for sensing aberration.
    Type: Application
    Filed: January 24, 2007
    Publication date: September 16, 2010
    Inventors: Robert W. Byren, William B. King, David M. Filgas
  • Patent number: 7626152
    Abstract: A beam control system and method. The system includes an illuminator for providing a first beam of electromagnetic energy at a first wavelength; a source for providing a second beam of electromagnetic energy at a second wavelength; and an arrangement for compensating wavefront errors in the second beam using a bias representative of a comparison between the first wavelength and the second wavelength. In the illustrative embodiment, the arrangement includes a processor which corrects wavefront errors using a bias representative of a difference between said first wavelength and said second wavelength. In the disclosed application, a target wavefront sensor is included and the laser is a high-energy laser beam. The wavefront errors include a chromatic aberration and the errors are compensated using a deformable mirror and a correction algorithm executed by an adaptive optics processor. In one alternative embodiment, the errors are compensated using an optical aberration corrector.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: December 1, 2009
    Assignee: Raytheon Company
    Inventors: William B. King, Chungte W. Chen, Robert W. Byren, Chaunchy F. McKearn
  • Publication number: 20080042042
    Abstract: A beam control system and method. The system includes an illuminator for providing a first beam of electromagnetic energy at a first wavelength; a source for providing a second beam of electromagnetic energy at a second wavelength; and an arrangement for compensating wavefront errors in the second beam using a bias representative of a comparison between the first wavelength and the second wavelength. In the illustrative embodiment, the arrangement includes a processor which corrects wavefront errors using a bias representative of a difference between said first wavelength and said second wavelength. In the disclosed application, a target wavefront sensor is included and the laser is a high-energy laser beam. The wavefront errors include a chromatic aberration and the errors are compensated using a deformable mirror and a correction algorithm executed by an adaptive optics processor. In one alternative embodiment, the errors are compensated using an optical aberration corrector.
    Type: Application
    Filed: August 16, 2006
    Publication date: February 21, 2008
    Inventors: William B. King, Chungte W. Chen, Robert W. Byren, Chaunchy F. McKearn
  • Patent number: 6693749
    Abstract: A situation awareness viewing device, typically in the form of a head-mounted display device, includes a polarizing beam splitter made of a cube of a material transparent to light and having an index of refraction greater than 1, and a wire grid polarizer lying within the cube on a cube-diagonal plane extending between two diagonally opposed edges of the cube. The polarizing beam splitter has a first optical axis extending from a first face of the cube toward an opposing second face of the cube and lying at an angle of 45 degrees to the cube-diagonal plane, and a second optical axis extending from a third face of the cube toward an opposing fourth face of the cube and lying at an angle of 45 degrees to the cube-diagonal plane, the second optical axis being perpendicular to the first optical axis.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: February 17, 2004
    Assignee: Raytheon Company
    Inventors: William B. King, Chungte W. Chen, Ronald G. Hegg, John E. Gunther, Richard W. Nichols
  • Patent number: 6563638
    Abstract: A collimating optical device utilizes a reflective beamsplitter in the form of a linear polarizing beamsplitter to achieve a wide field of view. One form of the wide-angle collimating optical device includes, in order from an image source, a first absorptive linear polarizer; a first quarter-wave plate; an optical doublet including a piano-concave singlet, a plano-convex singlet whose convex surface has the same curvature as the curvature of the concave surface, and a first reflective beamsplitter joining the concave surface of the plano-concave singlet to the convex surface of the plano-convex singlet; a second quarter-wave plate; and a second reflective beamsplitter. One of the reflective beamsplitters is a linear polarizing beamsplitter, most preferably a wire grid polarizer.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: May 13, 2003
    Assignee: Raytheon Company
    Inventors: William B. King, Chungte W. Chen, Ronald G. Hegg, John E. Gunther