Patents by Inventor William Barber

William Barber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111053
    Abstract: A light detection and ranging (LIDAR) sensor system for a vehicle includes a transmitter, a receiver, and a scanner. The transmitter is configured to output a transmit beam. The transmitter includes a first grating coupler. The receiver includes a plurality of second grating couplers spaced apart from the first grating coupler.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Applicant: Aurora Operations, Inc.
    Inventors: Edward Joseph Angus, Zeb William Barber, Andrew Steil Michaels, Evan Rogers
  • Publication number: 20240053453
    Abstract: A light detection and ranging (lidar) system may include a transceiver, a first device including a laser source configured to generate a beam, and one or more optical components, a second device including one or more analog-to-digital converters (ADCs), and a processor configured to alternately turn on the first device and turn on the transceiver. The first device may be configured to generate, based on the beam, an optical signal associated with a local oscillator (LO) signal. The transceiver may be configured to transmit the optical signal to an environment, in response to transmitting the optical signal, receive a returned optical signal that is reflected from an object in the environment, and pair the returned optical signal with the LO signal to generate an electrical signal. The second device may be configured to generate, based on the electrical signal, a digital signal.
    Type: Application
    Filed: July 14, 2023
    Publication date: February 15, 2024
    Applicant: Aurora Operations, Inc.
    Inventors: Zeb William Barber, Stefan Heineman, Randy Ray Reibel
  • Patent number: 11874376
    Abstract: A light detection and ranging (LIDAR) sensor system for a vehicle includes a transmitter, a receiver, and a scanner. The transmitter is configured to output a transmit beam. The transmitter includes a first grating coupler. The receiver includes a plurality of second grating couplers spaced apart from the first grating coupler.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: January 16, 2024
    Assignee: AURORA OPERATIONS, INC.
    Inventors: Edward Joseph Angus, Zeb William Barber, Andrew Steil Michaels, Evan Rogers
  • Patent number: 11841441
    Abstract: A LIDAR system includes a laser source, a first scanner, and a second scanner. The first scanner receives a first beam from the laser source and applies a first angle modulation to the first beam to output a second beam at a first angle. The second scanner receives the second beam and applies a second angle modulation to the second beam to output a third beam at a second angle.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: December 12, 2023
    Assignee: AURORA OPERATIONS, INC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Ryan Moore Galloway, Edward Joseph Angus, Emil Kadlec
  • Patent number: 11835657
    Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: December 5, 2023
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Ryan Moore Galloway, Edward Angus, Zeb William Barber
  • Publication number: 20230384447
    Abstract: An autonomous vehicle control system may include one or more processors configured to receive an electrical signal generated based on a returned optical signal that is reflected from an object. The one or more processors may determine a Doppler frequency shift of the returned optical signal over a first duration of the electrical signal. The one or more processors may generate a corrected electrical signal based on the Doppler frequency shift. The one or more processors may determine a range to the object based on the corrected electrical signal over a second duration that is shorter than the first duration. The one or more processors may control at least one of a steering system or a braking system based on the range.
    Type: Application
    Filed: September 6, 2023
    Publication date: November 30, 2023
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Zeb William Barber, Emil Kadlec, Krishna Rupavatharam
  • Patent number: 11740337
    Abstract: A light detection and ranging (lidar) system may include a transceiver, a first device including a laser source configured to generate a beam, and one or more optical components, a second device including one or more analog-to-digital converters (ADCs), and a processor configured to alternately turn on the first device and turn on the transceiver. The first device may be configured to generate, based on the beam, an optical signal associated with a local oscillator (LO) signal. The transceiver may be configured to transmit the optical signal to an environment, in response to transmitting the optical signal, receive a returned optical signal that is reflected from an object in the environment, and pair the returned optical signal with the LO signal to generate an electrical signal. The second device may be configured to generate, based on the electrical signal, a digital signal.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: August 29, 2023
    Assignee: Aurora Operations, Inc.
    Inventors: Zeb William Barber, Stefan Heineman, Randy Ray Reibel
  • Patent number: 11709267
    Abstract: A system and method for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection includes receiving an electrical signal generated by mixing a first optical signal and a second optical signal, wherein the first optical signal is generated by modulating an optical signal, wherein and the second optical signal is received in response to transmitting the first optical signal toward an object, and determining a Doppler frequency shift of the second optical signal, and generating a corrected electrical signal by adjusting the electrical signal based on the Doppler frequency shift, and determining a range to the object based on a cross correlation of the corrected electrical signal with a radio frequency (RF) signal that is associated with the first optical signal.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: July 25, 2023
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Zeb William Barber, Emil Kadlec, Krishna Rupavatharam
  • Publication number: 20220244363
    Abstract: A method for controlling a light detection and ranging (LIDAR) sensor system includes determining a code that has a first set of symbols having a first number of symbols. An optical signal generated based on the code is transmitted to an environment. The first set of symbols are transmitted as part of the optical signal in a first duration. In response to transmitting the optical signal, a returned optical signal that is reflected from an object in the environment is received. A second number of symbols to be sampled is determined, the second number of symbols being different than the first number of symbols. A second set of symbols having the second number of symbols is sampled in a second duration based on the returned optical signal. A range to the object is determined based on the second set of symbols.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Publication number: 20220146643
    Abstract: A LIDAR system includes a laser source, a first scanner, and a second scanner. The first scanner receives a first beam from the laser source and applies a first angle modulation to the first beam to output a second beam at a first angle. The second scanner receives the second beam and applies a second angle modulation to the second beam to output a third beam at a second angle.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: AURORA OPERATIONS, INC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Ryan Moore Galloway, Edward Joseph Angus, Emil Kadlec
  • Patent number: 11327161
    Abstract: A light detection and ranging (LIDAR) system includes one or more processors, and one or more computer-readable storage mediums storing instructions which, when executed by the one or more processors, cause the one or more processors to determine a code that has a first number of symbols, transmit, to an environment, an optical signal generated based on the code such that the first number of symbols are transmitted in a first duration, in response to transmitting the optical signal, receive a returned optical signal that is reflected from an object in the environment, sample, from the returned optical signal, a second number of symbols in a second duration, the second number being different from the first number, and determine, based on the second number of symbols, a range to the object.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 10, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Publication number: 20220113387
    Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Ryan Moore Galloway, Edward Angus, Zeb William Barber
  • Patent number: 11262455
    Abstract: A LIDAR system includes a laser source, a first scanner, and a second scanner. The first scanner receives a first beam from the laser source and applies a first angle modulation to the first beam to output a second beam at a first angle. The second scanner receives the second beam and applies a second angle modulation to the second beam to output a third beam at a second angle.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: March 1, 2022
    Assignee: AURORA OPERATIONS, INC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Ryan Moore Galloway, Edward Joseph Angus, Emil Kadlec
  • Patent number: 11237253
    Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: February 1, 2022
    Assignee: BLACKMORE SENSORS AND ANALYTICS, LLC
    Inventors: Ryan Moore Galloway, Edward Angus, Zeb William Barber
  • Publication number: 20210405205
    Abstract: A LIDAR system includes a laser source, a first scanner, and a second scanner. The first scanner receives a first beam from the laser source and applies a first angle modulation to the first beam to output a second beam at a first angle. The second scanner receives the second beam and applies a second angle modulation to the second beam to output a third beam at a second angle.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 30, 2021
    Applicant: Aurora Innovation, Inc.
    Inventors: Zeb William Barber, Stephen C. Crouch, Ryan Moore Galloway, Edward Joseph Angus, Emil Kadlec
  • Patent number: 11150536
    Abstract: Techniques for generating an arbitrary target electromagnetic signal with a nonlinear material, include determining a time varying target amplitude and target phase and an order n of a nonlinear material. For each time, a first set of nth roots of the target amplitude and a second set of nth roots of the target phase are determined. An input amplitude based on one value from the first set and an input phase based on one value from the second set is determined at each time. A difference between temporally successive values of phase is minimized. An electromagnetic signal is modulated to impose the input amplitude and phase to produce a modulated electromagnetic input signal that is introduced into the nonlinear material to produce a target electromagnetic signal.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: October 19, 2021
    Assignees: S2 CORPORATION, MONTANA STATE UNIVERSITY
    Inventors: Zeb William Barber, Calvin Harrington, Krishna Mohan Rupavatharam, Peter B. Sellin, Craig Benko
  • Publication number: 20210255294
    Abstract: A light detection and ranging (LIDAR) system includes one or more processors, and one or more computer-readable storage mediums storing instructions which, when executed by the one or more processors, cause the one or more processors to determine a code that has a first number of symbols, transmit, to an environment, an optical signal generated based on the code such that the first number of symbols are transmitted in a first duration, in response to transmitting the optical signal, receive a returned optical signal that is reflected from an object in the environment, sample, from the returned optical signal, a second number of symbols in a second duration, the second number being different from the first number, and determine, based on the second number of symbols, a range to the object.
    Type: Application
    Filed: April 12, 2021
    Publication date: August 19, 2021
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Patent number: 11016197
    Abstract: A LIDAR system includes a laser source, a first scanner, and a second scanner. The first scanner receives a first beam from the laser source and applies a first angle modulation to the first beam to output a second beam at a first angle. The second scanner receives the second beam and applies a second angle modulation to the second beam to output a third beam at a second angle.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 25, 2021
    Assignee: AURORA INNOVATION, INC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Ryan Moore Galloway, Edward Joseph Angus, Emil Kadlec
  • Patent number: 11002837
    Abstract: A system and method for sidelobe suppression in phase-encoded Doppler LIDAR to support the operation of a vehicle includes determining a sequence code that is indicative of a sequence of phases for an optical signal; modulating an optical signal based on the sequence code to produce a phase-encoded optical signal; transmitting the phase-encoded optical signal to an environment; receiving, from the environment, a returned optical signal in response to transmitting the phase-encoded optical signal; generating, based on the returned optical signal, an electrical signal; and determine a Doppler frequency shift in the returned optical signal.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 11, 2021
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Publication number: 20210072381
    Abstract: A system and method for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection includes receiving an electrical signal generated by mixing a first optical signal and a second optical signal, wherein the first optical signal is generated by modulating an optical signal, wherein and the second optical signal is received in response to transmitting the first optical signal toward an object, and determining a Doppler frequency shift of the second optical signal, and generating a corrected electrical signal by adjusting the electrical signal based on the Doppler frequency shift, and determining a range to the object based on a cross correlation of the corrected electrical signal with a radio frequency (RF) signal that is associated with the first optical signal.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Applicant: Blackmore Sensors & Analytics, LLC
    Inventors: Stephen C. Crouch, Zeb William Barber, Emil Kadlec, Krishna Rupavatharam