Patents by Inventor William Boyd Rogers

William Boyd Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10672624
    Abstract: A method of making a semiconductor device may include providing a carrier comprising a semiconductor die mounting site. A build-up interconnect structure may be formed over the carrier. A first portion of a conductive interconnect may be formed over the build-up interconnect structure in a periphery of the semiconductor die mounting site. An etch stop layer and a second portion of the conductive interconnect may be formed over the first portion of the conductive interconnect. A semiconductor die may be mounted to the build-up interconnect at the semiconductor die mounting site. The conductive interconnect and the semiconductor die may be encapsulated with a mold compound. A first end of the conductive interconnect on the second portion of the conductive interconnect may be exposed. The carrier may be removed to expose the build-up interconnect structure. The first portion of the conductive interconnect may be etched to expose the etch stop layer.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: June 2, 2020
    Assignee: Deca Technologies Inc.
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Patent number: 10600652
    Abstract: A method of removing at least a portion of a layer of material from over a semiconductor substrate that can include dispensing an etching solution over the semiconductor substrate to form a pool of etching solution on the layer of material, wherein a footprint of the pool of etching solution is less than a footprint of the semiconductor substrate. The pool of etching solution and the semiconductor substrate can be moved with respect to each other. A pool boundary of the pool of etching solution can be defined on the semiconductor substrate with at least one air-knife such that the pool of etching solution etches the layer of material over the semiconductor substrate within the footprint of the pool of etching solution. The etching solution and at least a portion of the layer of material etched by the etching solution can be removed with the at least one air-knife.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: March 24, 2020
    Assignee: Deca Technologies Inc.
    Inventors: Timothy L. Olson, William Boyd Rogers, Ferdinand Aldas
  • Patent number: 10204803
    Abstract: A semiconductor device and method of making the semiconductor device is described. A semiconductor die can be provided. A polymer layer can be formed over the semiconductor die. A via can be formed in the polymer layer. The polymer layer can be cross-linked in a first process, after forming the via, by exposing the polymer layer to ultraviolet (UV) radiation to form a sidewall of the via with via sidewall slope greater than or equal to 45 degrees and to further form a cross-linked via sidewall surface. The polymer layer can be thermally cured in a second process after the first process, wherein a maximum ramp-up rate from room temperature to a peak temperature of the second process is greater than 10 degrees Celsius per minute.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 12, 2019
    Assignee: Deca Technologies Inc.
    Inventors: William Boyd Rogers, Willibrordus Gerardus Maria van den Hoek
  • Publication number: 20180330966
    Abstract: A method of making a semiconductor device may include providing a carrier comprising a semiconductor die mounting site. A build-up interconnect structure may be formed over the carrier. A first portion of a conductive interconnect may be formed over the build-up interconnect structure in a periphery of the semiconductor die mounting site. An etch stop layer and a second portion of the conductive interconnect may be formed over the first portion of the conductive interconnect. A semiconductor die may be mounted to the build-up interconnect at the semiconductor die mounting site. The conductive interconnect and the semiconductor die may be encapsulated with a mold compound. A first end of the conductive interconnect on the second portion of the conductive interconnect may be exposed. The carrier may be removed to expose the build-up interconnect structure. The first portion of the conductive interconnect may be etched to expose the etch stop layer.
    Type: Application
    Filed: June 19, 2018
    Publication date: November 15, 2018
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Patent number: 10050004
    Abstract: A method of making a semiconductor device can comprise providing a temporary carrier comprising a semiconductor die mounting site, and forming an insulating layer over the temporary carrier. Conductive pads can be formed within openings in the insulating layer and be positioned both within and without the die mounting area. A backside redistribution layer (RDL) can be formed over the temporary carrier before mounting a semiconductor die at the die mounting site. Conductive interconnects can be formed over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted face up to the insulating layer. The conductive interconnects, backside RDL, and semiconductor die can be encapsulated with a mold compound. A build-up interconnect structure can be formed and connected to the semiconductor die and the conductive interconnects. The temporary carrier can be removed and the conductive pads exposed in a grinding process.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: August 14, 2018
    Assignee: DECA Technologies Inc.
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Publication number: 20170221719
    Abstract: A method of removing at least a portion of a layer of material from over a semiconductor substrate that can include dispensing an etching solution over the semiconductor substrate to form a pool of etching solution on the layer of material, wherein a footprint of the pool of etching solution is less than a footprint of the semiconductor substrate. The pool of etching solution and the semiconductor substrate can be moved with respect to each other. A pool boundary of the pool of etching solution can be defined on the semiconductor substrate with at least one air-knife such that the pool of etching solution etches the layer of material over the semiconductor substrate within the footprint of the pool of etching solution. The etching solution and at least a portion of the layer of material etched by the etching solution can be removed with the at least one air-knife.
    Type: Application
    Filed: April 11, 2017
    Publication date: August 3, 2017
    Inventors: Timothy L. Olson, William Boyd Rogers, Ferdinand Aldas
  • Publication number: 20170221830
    Abstract: A method of making a semiconductor device can include providing a temporary carrier with a semiconductor die mounting site, and forming conductive interconnects over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted at the semiconductor die mounting site. The conductive interconnects and semiconductor die can be encapsulated with mold compound. First ends of the conductive interconnects can be exposed. The temporary carrier can be removed to expose second ends of the conductive interconnects opposite the first ends of the conductive interconnects. The conductive interconnects can be etched to recess the second ends of the conductive interconnects with respect to the mold compound. The conductive interconnects can comprise a first portion, a second portion, and an etch stop layer disposed between the first portion and the second portion.
    Type: Application
    Filed: April 4, 2017
    Publication date: August 3, 2017
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Publication number: 20170148755
    Abstract: A method of making a semiconductor device can comprise providing a temporary carrier comprising a semiconductor die mounting site, and forming an insulating layer over the temporary carrier. Conductive pads can be formed within openings in the insulating layer and be positioned both within and without the die mounting area. A backside redistribution layer (RDL) can be formed over the temporary carrier before mounting a semiconductor die at the die mounting site. Conductive interconnects can be formed over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted face up to the insulating layer. The conductive interconnects, backside RDL, and semiconductor die can be encapsulated with a mold compound. A build-up interconnect structure can be formed and connected to the semiconductor die and the conductive interconnects. The temporary carrier can be removed and the conductive pads exposed in a grinding process.
    Type: Application
    Filed: November 18, 2016
    Publication date: May 25, 2017
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Patent number: 9640495
    Abstract: A method of removing at least a portion of a layer of material from over a semiconductor substrate that can include dispensing an etching solution over the semiconductor substrate to form a pool of etching solution on the layer of material, wherein a footprint of the pool of etching solution is less than a footprint of the semiconductor substrate. The pool of etching solution and the semiconductor substrate can be moved with respect to each other. A pool boundary of the pool of etching solution can be defined on the semiconductor substrate with at least one air-knife such that the pool of etching solution etches the layer of material over the semiconductor substrate within the footprint of the pool of etching solution. The etching solution and at least a portion of the layer of material etched by the etching solution can be removed with the at least one air-knife.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: May 2, 2017
    Assignee: Deca Technologies Inc.
    Inventors: Timothy L. Olson, William Boyd Rogers, Ferdinand Aldas
  • Patent number: 9613830
    Abstract: A method of making a semiconductor device can include providing a temporary carrier with a semiconductor die mounting site, and forming conductive interconnects over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted at the semiconductor die mounting site. The conductive interconnects and semiconductor die can be encapsulated with mold compound. First ends of the conductive interconnects can be exposed. The temporary carrier can be removed to expose second ends of the conductive interconnects opposite the first ends of the conductive interconnects. The conductive interconnects can be etched to recess the second ends of the conductive interconnects with respect to the mold compound. The conductive interconnects can comprise a first portion, a second portion, and an etch stop layer disposed between the first portion and the second portion.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: April 4, 2017
    Assignee: Deca Technologies Inc.
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Publication number: 20170012009
    Abstract: A method of removing at least a portion of a layer of material from over a semiconductor substrate that can include dispensing an etching solution over the semiconductor substrate to form a pool of etching solution on the layer of material, wherein a footprint of the pool of etching solution is less than a footprint of the semiconductor substrate. The pool of etching solution and the semiconductor substrate can be moved with respect to each other. A pool boundary of the pool of etching solution can be defined on the semiconductor substrate with at least one air-knife such that the pool of etching solution etches the layer of material over the semiconductor substrate within the footprint of the pool of etching solution. The etching solution and at least a portion of the layer of material etched by the etching solution can be removed with the at least one air-knife.
    Type: Application
    Filed: July 7, 2016
    Publication date: January 12, 2017
    Inventors: Timothy L. Olson, William Boyd Rogers, Ferdinand Aldas
  • Publication number: 20160260682
    Abstract: A method of making a semiconductor device can include providing a temporary carrier with a semiconductor die mounting site, and forming conductive interconnects over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted at the semiconductor die mounting site. The conductive interconnects and semiconductor die can be encapsulated with mold compound. First ends of the conductive interconnects can be exposed. The temporary carrier can be removed to expose second ends of the conductive interconnects opposite the first ends of the conductive interconnects. The conductive interconnects can be etched to recess the second ends of the conductive interconnects with respect to the mold compound. The conductive interconnects can comprise a first portion, a second portion, and an etch stop layer disposed between the first portion and the second portion.
    Type: Application
    Filed: May 10, 2016
    Publication date: September 8, 2016
    Inventors: Christopher M. Scanlan, William Boyd Rogers, Craig Bishop
  • Publication number: 20160027666
    Abstract: A semiconductor device and method of making the semiconductor device is described. A semiconductor die can be provided. A polymer layer can be formed over the semiconductor die. A via can be formed in the polymer layer. The polymer layer can be cross-linked in a first process, after forming the via, by exposing the polymer layer to ultraviolet (UV) radiation to form a sidewall of the via with via sidewall slope greater than or equal to 45 degrees and to further form a cross-linked via sidewall surface. The polymer layer can be thermally cured in a second process after the first process, wherein a maximum ramp-up rate from room temperature to a peak temperature of the second process is greater than 10 degrees Celsius per minute.
    Type: Application
    Filed: October 6, 2015
    Publication date: January 28, 2016
    Inventors: William Boyd Rogers, Willibrordus Gerardus Maria van den Hoek
  • Patent number: 9159547
    Abstract: A semiconductor device and method of making the semiconductor device is described. A semiconductor die is provided. A polymer layer is formed over the semiconductor die. A via is formed in the polymer layer. The polymer layer is crosslinked in a first process. The polymer layer is thermally cured in a second process. The polymer layer can comprise polybenzoxazoles (PBO), polyimide, benzocyclobutene (BCB), or siloxane-based polymers. A surface of the polymer layer can be crosslinked by a UV bake to control a slope of the via during subsequent curing. The second process can further comprise thermally curing the polymer layer using conduction, convection, infrared, or microwave heating. The polymer layer can be thermally cured by increasing a temperature of the polymer at a rate greater than or equal to 10 degrees Celsius per minute, and can be completely cured in less than or equal to 60 minutes.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: October 13, 2015
    Assignee: DECA Technologies Inc.
    Inventors: William Boyd Rogers, Willibrordus Gerardus Maria van den Hoek
  • Publication number: 20150079805
    Abstract: A semiconductor device and method of making the semiconductor device is described. A semiconductor die is provided. A polymer layer is formed over the semiconductor die. A via is formed in the polymer layer. The polymer layer is crosslinked in a first process. The polymer layer is thermally cured in a second process. The polymer layer can comprise polybenzoxazoles (PBO), polyimide, benzocyclobutene (BCB), or siloxane-based polymers. A surface of the polymer layer can be crosslinked by a UV bake to control a slope of the via during subsequent curing. The second process can further comprise thermally curing the polymer layer using conduction, convection, infrared, or microwave heating. The polymer layer can be thermally cured by increasing a temperature of the polymer at a rate greater than or equal to 10 degrees Celsius per minute, and can be completely cured in less than or equal to 60 minutes.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: DECA TECHNOLOGIES INC.
    Inventors: William Boyd Rogers, Willibrordus Gerardus Maria van den Hoek
  • Patent number: 6793792
    Abstract: Methods for electroplating metal can include passing an electrical current through a conductive surface and an electroplating solution adjacent the conductive surface. An electroplating voltage for the conductive surface and the electroplating solution can be determined based on the electrical current through the conductive surface and the electroplating solution adjacent the conductive surface. The determined electroplating voltage can then be maintained while electroplating the metal from the electroplating solution on the conductive surface. Related systems are also discussed.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: September 21, 2004
    Assignee: Unitive International Limited Curaco
    Inventors: Curtis Grant Jones, William Boyd Rogers, Glenn A. Rinne
  • Publication number: 20020092771
    Abstract: Methods for electroplating metal can include passing an electrical current through a conductive surface and an electroplating solution adjacent the conductive surface. An electroplating voltage for the conductive surface and the electroplating solution can be determined based on the electrical current through the conductive surface and the electroplating solution adjacent the conductive surface. The determined electroplating voltage can then be maintained while electroplating the metal from the electroplating solution on the conductive surface. Related systems are also discussed.
    Type: Application
    Filed: January 11, 2002
    Publication date: July 18, 2002
    Inventors: Curtis Grant Jones, William Boyd Rogers, Glenn A. Rinne