Patents by Inventor William Brezinski

William Brezinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11887887
    Abstract: An integrated circuit interconnect structure includes a first interconnect in a first metallization level and a first dielectric adjacent to at least a portion of the first interconnect, where the first dielectric having a first carbon content. The integrated circuit interconnect structure further includes a second interconnect in a second metallization level above the first metallization level. The second interconnect includes a lowermost surface in contact with at least a portion of an uppermost surface of the first interconnect. A second dielectric having a second carbon content is adjacent to at least a portion of the second interconnect and the first dielectric. The first carbon concentration increases with distance away from the lowermost surface of the second interconnect and the second carbon concentration increases with distance away from the uppermost surface of the first interconnect.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Ramanan Chebiam, Brennen Mueller, Colin Carver, Jeffery Bielefeld, Nafees Kabir, Richard Vreeland, William Brezinski
  • Patent number: 11846032
    Abstract: Catalyst systems employing inexpensive and readily-available protic co-catalysts to increase a proton reduction rate in a hydrogen evolution reaction (HER) are described herein. The protic co-catalysts function to increase the rate without being consumed in the process of water splitting to hydrogen and oxygen. They may simultaneously serve to stabilize the pH of the water and be the electrolyte to carry the current for the electrolytic splitting of water. The protic co-catalysts also decrease the overpotential energy requirement for the process of water splitting. These protic co-catalysts can be used with both heterogeneous and homogenous catalysts, as well as assist photocatalysis and other processes for the reduction of protons.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 19, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Dennis Lichtenberger, Richard S. Glass, Dong-Chul Pyun, William Brezinski, Kayla Clary, Metin Karayilan
  • Patent number: 11784123
    Abstract: Composite integrated circuit (IC) device structures that include two components coupled through hybrid bonded interconnect structure. The two components may be two different monolithic IC structures (e.g., chips) that are bonded over a substantially planar dielectric and metallization layer. A surface of a metallization feature may be augmented with supplemental metal, for example to at least partially backfill a recess in a surface of the metallization feature as left by a planarization process. In some exemplary embodiments, supplemental metal is deposited selectively onto a metallization feature through an autocatalytic (electroless) metal deposition process. A surface of a dielectric material surrounding a metallization feature may also be recessed, for example to at least partially neutralize a recess in an adjacent metallization feature, for example resulting from a planarization process.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventors: Richard Vreeland, Colin Carver, William Brezinski, Michael Christenson, Nafees Kabir
  • Patent number: 11649548
    Abstract: Metallopolymers composed of polymers and catalytically active diiron-disulfide ([2Fe-2S]) complexes are described herein. [FeFe]-hydrogenase mimics have been synthesized and used to initiate polymerization of various monomers to generate metallopolymers containing active [2Fe-2S] sites which serve as catalysts for a hydrogen evolution reaction (HER). Vinylic monomers with polar groups provided water solubility relevant for large scale hydrogen production, leveraging the supramolecular architecture to improve catalysis. Metallopolymeric electrocatalysts displayed high turnover frequency and low overpotential in aqueous media as well as aerobic stability. Metallopolymeric photocatalysts incorporated P3HT ligands to serve as a photosensitizer to promote photoinduced electron transfer to the active complex.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: May 16, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Dong-Chul Pyun, Richard S. Glass, Dennis Lichtenberger, William Brezinski, Kayla Clary, Metin Karayilan
  • Patent number: 11532558
    Abstract: Composite integrated circuit (IC) device structures that include two components coupled through a hybrid bonded composite interconnect structure. The two components may be two different monolithic IC structures (e.g., chips) that are bonded over substantially planar dielectric and metallization interfaces. Composite interconnect metallization features formed at a bond interface may be doped with a metal or chalcogenide dopant. The dopant may migrate to a periphery of the composite interconnect structure and form a barrier material that will then limit outdiffusion of a metal, such as copper, into adjacent dielectric material.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Carl Naylor, Mauro Kobrinsky, Richard Vreeland, Ramanan Chebiam, William Brezinski, Brennen Mueller, Jeffery Bielefeld
  • Publication number: 20220336267
    Abstract: An integrated circuit interconnect structure includes a first interconnect in a first metallization level and a first dielectric adjacent to at least a portion of the first interconnect, where the first dielectric having a first carbon content. The integrated circuit interconnect structure further includes a second interconnect in a second metallization level above the first metallization level. The second interconnect includes a lowermost surface in contact with at least a portion of an uppermost surface of the first interconnect. A second dielectric having a second carbon content is adjacent to at least a portion of the second interconnect and the first dielectric. The first carbon concentration increases with distance away from the lowermost surface of the second interconnect and the second carbon concentration increases with distance away from the uppermost surface of the first interconnect.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Applicant: Intel Corporation
    Inventors: Manish Chandhok, Ramanan Chebiam, Brennen Mueller, Colin Carver, Jeffery Bielefeld, Nafees Kabir, Richard Vreeland, William Brezinski
  • Patent number: 11404307
    Abstract: An integrated circuit interconnect structure includes a first interconnect in a first metallization level and a first dielectric adjacent to at least a portion of the first interconnect, where the first dielectric having a first carbon content. The integrated circuit interconnect structure further includes a second interconnect in a second metallization level above the first metallization level. The second interconnect includes a lowermost surface in contact with at least a portion of an uppermost surface of the first interconnect. A second dielectric having a second carbon content is adjacent to at least a portion of the second interconnect and the first dielectric. The first carbon concentration increases with distance away from the lowermost surface of the second interconnect and the second carbon concentration increases with distance away from the uppermost surface of the first interconnect.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Ramanan Chebiam, Brennen Mueller, Colin Carver, Jeffery Bielefeld, Nafees Kabir, Richard Vreeland, William Brezinski
  • Publication number: 20220181251
    Abstract: Composite integrated circuit (IC) device structures that include two components coupled through hybrid bonded interconnect structure. The two components may be two different monolithic IC structures (e.g., chips) that are bonded over a substantially planar dielectric and metallization layer. A surface of a metallization feature may be augmented with supplemental metal, for example to at least partially backfill a recess in a surface of the metallization feature as left by a planarization process. In some exemplary embodiments, supplemental metal is deposited selectively onto a metallization feature through an autocatalytic (electroless) metal deposition process. A surface of a dielectric material surrounding a metallization feature may also be recessed, for example to at least partially neutralize a recess in an adjacent metallization feature, for example resulting from a planarization process.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Applicant: Intel Corporation
    Inventors: Richard Vreeland, Colin Carver, William Brezinski, Michael Christenson, Nafees Kabir
  • Patent number: 11289421
    Abstract: Composite integrated circuit (IC) device structures that include two components coupled through hybrid bonded interconnect structure. The two components may be two different monolithic IC structures (e.g., chips) that are bonded over a substantially planar dielectric and metallization layer. A surface of a metallization feature may be augmented with supplemental metal, for example to at least partially backfill a recess in a surface of the metallization feature as left by a planarization process. In some exemplary embodiments, supplemental metal is deposited selectively onto a metallization feature through an autocatalytic (electroless) metal deposition process. A surface of a dielectric material surrounding a metallization feature may also be recessed, for example to at least partially neutralize a recess in an adjacent metallization feature, for example resulting from a planarization process.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 29, 2022
    Assignee: Intel Corporation
    Inventors: Richard Vreeland, Colin Carver, William Brezinski, Michael Christenson, Nafees Kabir
  • Publication number: 20210098360
    Abstract: An integrated circuit interconnect structure includes a first interconnect in a first metallization level and a first dielectric adjacent to at least a portion of the first interconnect, where the first dielectric having a first carbon content. The integrated circuit interconnect structure further includes a second interconnect in a second metallization level above the first metallization level. The second interconnect includes a lowermost surface in contact with at least a portion of an uppermost surface of the first interconnect. A second dielectric having a second carbon content is adjacent to at least a portion of the second interconnect and the first dielectric. The first carbon concentration increases with distance away from the lowermost surface of the second interconnect and the second carbon concentration increases with distance away from the uppermost surface of the first interconnect.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Applicant: Intel Corporation
    Inventors: Manish Chandhok, Ramanan Chebiam, Brennen Mueller, Colin Carver, Jeffery Bielefeld, Nafees Kabir, Richard Vreeland, William Brezinski
  • Publication number: 20210098359
    Abstract: Composite integrated circuit (IC) device structures that include two components coupled through hybrid bonded interconnect structure. The two components may be two different monolithic IC structures (e.g., chips) that are bonded over a substantially planar dielectric and metallization layer. A surface of a metallization feature may be augmented with supplemental metal, for example to at least partially backfill a recess in a surface of the metallization feature as left by a planarization process. In some exemplary embodiments, supplemental metal is deposited selectively onto a metallization feature through an autocatalytic (electroless) metal deposition process. A surface of a dielectric material surrounding a metallization feature may also be recessed, for example to at least partially neutralize a recess in an adjacent metallization feature, for example resulting from a planarization process.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Applicant: Intel Corporation
    Inventors: Richard Vreeland, Colin Carver, William Brezinski, Michael Christenson, Nafees Kabir
  • Publication number: 20210098387
    Abstract: Composite integrated circuit (IC) device structures that include two components coupled through a hybrid bonded composite interconnect structure. The two components may be two different monolithic IC structures (e.g., chips) that are bonded over substantially planar dielectric and metallization interfaces. Composite interconnect metallization features formed at a bond interface may be doped with a metal or chalcogenide dopant. The dopant may migrate to a periphery of the composite interconnect structure and form a barrier material that will then limit outdiffusion of a metal, such as copper, into adjacent dielectric material.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Applicant: Intel Corporation
    Inventors: Carl Naylor, Mauro Kobrinsky, Richard Vreeland, Ramanan Chebiam, William Brezinski, Brennen Mueller, Jeffery Bielefeld
  • Publication number: 20200299848
    Abstract: Catalyst systems employing inexpensive and readily-available protic co-catalysts to increase a proton reduction rate in a hydrogen evolution reaction (HER) are described herein. The protic co-catalysts function to increase the rate without being consumed in the process of water splitting to hydrogen and oxygen. They may simultaneously serve to stabilize the pH of the water and be the electrolyte to carry the current for the electrolytic splitting of water. The protic co-catalysts also decrease the overpotential energy requirement for the process of water splitting. These protic co-catalysts can be used with both heterogeneous and homogenous catalysts, as well as assist photocatalysis and other processes for the reduction of protons.
    Type: Application
    Filed: December 11, 2018
    Publication date: September 24, 2020
    Inventors: Dennis Lichtenberger, Richard S. Glass, Dong-Chul Pyun, William Brezinski, Kayla Clary, Metin Karayilan
  • Publication number: 20190345618
    Abstract: Metallopolymers composed of polymers and catalytically active diiron-disulfide ([2Fe-2S]) complexes are described herein. [FeFe]-hydrogenase mimics have been synthesized and used to initiate polymerization of various monomers to generate metallopolymers containing active [2Fe-2S] sites which serve as catalysts for a hydrogen evolution reaction (HER). Vinylic monomers with polar groups provided water solubility relevant for large scale hydrogen production, leveraging the supramolecular architecture to improve catalysis. Metallopolymeric electrocatalysts displayed high turnover frequency and low overpotential in aqueous media as well as aerobic stability. Metallopolymeric photocatalysts incorporated P3HT ligands to serve as a photosensitizer to promote photoinduced electron transfer to the active complex.
    Type: Application
    Filed: December 11, 2017
    Publication date: November 14, 2019
    Inventors: Dong-Chul Pyun, Richard S. Glass, Dennis Lichtenberger, William Brezinski, Kayla Clary, Metin Karayilan