Patents by Inventor William Bryan SCHAFER, III

William Bryan SCHAFER, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11478724
    Abstract: The present invention utilizes mechanical vapor compression and/or thermal vapor compression integrating compression loops across multiple process stages. A sequential network of compressors is utilized to increase the pressure and condensing temperature of the vapors within each process stage, as intra-vapor flow, and branching between process stages, as inter-vapor flow. Because the vapors available are shared among and between compressor stages, the number of compressors can be reduced, improving economics. Balancing vapor mass flow through incremental compressor stages which traverse multiple process stages by splitting vapors between compressor stages enables the overall vapor-compression system to be tailored to individual process energy requirements and to accommodate dynamic fluctuations in process conditions.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: October 25, 2022
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Patent number: 11471784
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through vapor compression and to derive mechanical, thermal, and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Vapor compression (by mechanical vapor recompression and/or thermal vapor recompression) minimizes the total energy usage. Optionally, combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: October 18, 2022
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Patent number: 11458413
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through vapor compression and to derive mechanical, thermal, and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Vapor compression (by mechanical vapor recompression and/or thermal vapor recompression) minimizes the total energy usage. Optionally, combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: October 4, 2022
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Publication number: 20220305398
    Abstract: The present invention utilizes mechanical vapor compression and/or thermal vapor compression integrating compression loops across multiple process stages. A sequential network of compressors is utilized to increase the pressure and condensing temperature of the vapors within each process stage, as intra-vapor flow, and branching between process stages, as inter-vapor flow. Because the vapors available are shared among and between compressor stages, the number of compressors can be reduced, improving economics. Balancing vapor mass flow through incremental compressor stages which traverse multiple process stages by splitting vapors between compressor stages enables the overall vapor-compression system to be tailored to individual process energy requirements and to accommodate dynamic fluctuations in process conditions.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 29, 2022
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Patent number: 11364449
    Abstract: The present invention utilizes mechanical vapor compression and/or thermal vapor compression integrating compression loops across multiple process stages. A sequential network of compressors is utilized to increase the pressure and condensing temperature of the vapors within each process stage, as intra-vapor flow, and branching between process stages, as inter-vapor flow. Because the vapors available are shared among and between compressor stages, the number of compressors can be reduced, improving economics. Balancing vapor mass flow through incremental compressor stages which traverse multiple process stages by splitting vapors between compressor stages enables the overall vapor-compression system to be tailored to individual process energy requirements and to accommodate dynamic fluctuations in process conditions.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: June 21, 2022
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Publication number: 20220161154
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through vapor compression and to derive mechanical, thermal, and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Vapor compression (by mechanical vapor recompression and/or thermal vapor recompression) minimizes the total energy usage. Optionally, combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Patent number: 11291927
    Abstract: This disclosure provides systems and methods that utilize integrated mechanical vapor or thermal vapor compression to upgrade process vapors and condense them to recover the heat of condensation across multiple processes, wherein the total process energy is reduced. Existing processes that are unable to recover the heat of condensation in vapors are integrated with mechanical or thermal compressors that raise vapor pressures and temperatures sufficient to permit reuse. Integrating multiple processes permits vapor upgrading that can selectively optimize energy efficiency, environmental sustainability, process economics, or a prioritized blend of such goals. Mechanical or thermal vapor compression also alters the type of energy required in industrial processes, favoring electro-mechanical energy which can be supplied from low-carbon, renewable sources rather than combustion of carbonaceous fuels.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: April 5, 2022
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Publication number: 20220016543
    Abstract: This disclosure provides systems and methods that utilize integrated mechanical vapor or thermal vapor compression to upgrade process vapors and condense them to recover the heat of condensation across multiple processes, wherein the total process energy is reduced. Existing processes that are unable to recover the heat of condensation in vapors are integrated with mechanical or thermal compressors that raise vapor pressures and temperatures sufficient to permit reuse. Integrating multiple processes permits vapor upgrading that can selectively optimize energy efficiency, environmental sustainability, process economics, or a prioritized blend of such goals. Mechanical or thermal vapor compression also alters the type of energy required in industrial processes, favoring electro-mechanical energy which can be supplied from low-carbon, renewable sources rather than combustion of carbonaceous fuels.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 20, 2022
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Publication number: 20220016542
    Abstract: The present invention utilizes mechanical vapor compression and/or thermal vapor compression integrating compression loops across multiple process stages. A sequential network of compressors is utilized to increase the pressure and condensing temperature of the vapors within each process stage, as intra-vapor flow, and branching between process stages, as inter-vapor flow. Because the vapors available are shared among and between compressor stages, the number of compressors can be reduced, improving economics. Balancing vapor mass flow through incremental compressor stages which traverse multiple process stages by splitting vapors between compressor stages enables the overall vapor-compression system to be tailored to individual process energy requirements and to accommodate dynamic fluctuations in process conditions.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 20, 2022
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Patent number: 11034638
    Abstract: A method is disclosed for improving the energy efficiency of biorefinery drying operations through integration of a dryer that utilizes the heat of condensation of process vapors to dry material whose emissions are captured with energy recovery. The dryer separates clean process vapors (e.g., ethanol) and steam from vapors containing volatile organic compounds and entrained materials, to minimize the need for vapor cleanup. An indirect dryer condenses vapors in a tube dryer similar to a steam tube dryer, but utilizing compressed process vapors, transferring the heat to wet material undergoing drying. The resulting exhaust vapors are either directed to a process stage that requires heat (e.g., distillation) and minimizes the need for vapor cleanup or to an out-of-contact heat exchanger that produces vapors for process use, or to another dryer as an additional effect. Mechanical-vapor recompression or thermal-vapor recompression are employed to produce vapors that optimize overall energy recovery.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: June 15, 2021
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Patent number: 10947486
    Abstract: Systems and methods are disclosed for optimizing the process energy required for the conversion of carbon dioxide (CO2) to biochemicals through vapor compression. Mechanical or thermal vapor compression are used to minimize both the process energy and the cooling in condensers, integrating the heat required by those processes and reusing heat that is typically lost.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: March 16, 2021
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Publication number: 20200399193
    Abstract: A method is disclosed for improving the energy efficiency of biorefinery drying operations through integration of a dryer that utilizes the heat of condensation of process vapors to dry material whose emissions are captured with energy recovery. The dryer separates clean process vapors (e.g., ethanol) and steam from vapors containing volatile organic compounds and entrained materials, to minimize the need for vapor cleanup. An indirect dryer condenses vapors in a tube dryer similar to a steam tube dryer, but utilizing compressed process vapors, transferring the heat to wet material undergoing drying. The resulting exhaust vapors are either directed to a process stage that requires heat (e.g., distillation) and minimizes the need for vapor cleanup or to an out-of-contact heat exchanger that produces vapors for process use, or to another dryer as an additional effect. Mechanical-vapor recompression or thermal-vapor recompression are employed to produce vapors that optimize overall energy recovery.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 24, 2020
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Patent number: 10787407
    Abstract: A method is disclosed for improving the energy efficiency of biorefinery drying operations through integration of a dryer that utilizes the heat of condensation of process vapors to dry material whose emissions are captured with energy recovery. The dryer separates clean process vapors (e.g., ethanol) and steam from vapors containing volatile organic compounds and entrained materials, to minimize the need for vapor cleanup. An indirect dryer condenses vapors in a tube dryer similar to a steam tube dryer, but utilizing compressed process vapors, transferring the heat to wet material undergoing drying. The resulting exhaust vapors are either directed to a process stage that requires heat (e.g., distillation) and minimizes the need for vapor cleanup or to an out-of-contact heat exchanger that produces vapors for process use, or to another dryer as an additional effect. Mechanical-vapor recompression or thermal-vapor recompression are employed to produce vapors that optimize overall energy recovery.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 29, 2020
    Assignee: ENERGY INTEGRATION, INC.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Publication number: 20200247738
    Abstract: A method is disclosed for improving the energy efficiency of biorefinery drying operations through integration of a dryer that utilizes the heat of condensation of process vapors to dry material whose emissions are captured with energy recovery. The dryer separates clean process vapors (e.g., ethanol) and steam from vapors containing volatile organic compounds and entrained materials, to minimize the need for vapor cleanup. An indirect dryer condenses vapors in a tube dryer similar to a steam tube dryer, but utilizing compressed process vapors, transferring the heat to wet material undergoing drying. The resulting exhaust vapors are either directed to a process stage that requires heat (e.g., distillation) and minimizes the need for vapor cleanup or to an out-of-contact heat exchanger that produces vapors for process use, or to another dryer as an additional effect. Mechanical-vapor recompression or thermal-vapor recompression are employed to produce vapors that optimize overall energy recovery.
    Type: Application
    Filed: December 19, 2019
    Publication date: August 6, 2020
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Patent number: 9925476
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through mechanical vapor compression and to derive mechanical and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Mechanical vapor compression minimizes the total energy usage. Combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 27, 2018
    Assignee: Energy Integration, Inc.
    Inventors: Lynn Allen Crawford, William Bryan Schafer, III
  • Publication number: 20180028934
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through vapor compression and to derive mechanical, thermal, and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Vapor compression (by mechanical vapor recompression and/or thermal vapor recompression) minimizes the total energy usage. Optionally, combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Application
    Filed: September 21, 2017
    Publication date: February 1, 2018
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Publication number: 20170348607
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through mechanical vapor compression and to derive mechanical and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Mechanical vapor compression minimizes the total energy usage. Combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Application
    Filed: August 25, 2017
    Publication date: December 7, 2017
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III
  • Publication number: 20170274297
    Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through mechanical vapor compression and to derive mechanical and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Mechanical vapor compression minimizes the total energy usage. Combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 28, 2017
    Inventors: Lynn Allen CRAWFORD, William Bryan SCHAFER, III