Patents by Inventor William C. Alberts

William C. Alberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210371619
    Abstract: A binder solution comprises greater than or equal to 0.5 wt % and less than or equal to 20 wt % of nanoparticles, a thermoplastic binder, and a solvent. The nanoparticles may comprise metallic nanoparticles comprising nickel, silver, chromium, aluminum, cobalt, iron, or combinations thereof. The nanoparticles may comprise ceramic nanoparticles, the comprising alumina, aluminum nitride, zirconia, titania, silica, silicon nitride, silicon carbide, boron nitride, or combinations thereof. A method of manufacturing a part includes depositing a layer of particulate material on a working surface, applying a binder solution into the layer of particulate material in a pattern, repeating the steps of depositing and selectively applying to form a plurality of layers of particulate material with the applied binder solution, and curing the applied binder solution in the plurality of layers of particulate material with the applied binder solution to evaporate the solvent and thereby form a green body part.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 2, 2021
    Applicant: General Electric Company
    Inventors: Arunkumar Natarajan, Kwok Pong Chan, William C. Alberts, Vadim Bromberg
  • Publication number: 20210370547
    Abstract: A binder solution comprises a fugitive metal precursor, a thermoplastic binder, and a solvent. The fugitive metal precursor may comprise an alkaline earth metal, a transition metal, a post-transition metal, a metalloid, a rare earth metal, or combinations thereof. The fugitive metal precursor may comprise a salt such as carboxylate, nitrate, sulfate, carbonate, formate, chloride, halide, derivatives thereof, and combinations thereof. A method of manufacturing a part includes depositing a layer of particulate material on a working surface, selectively applying a binder solution into the layer of particulate material in a pattern representative of a layer of the part, repeating the steps of depositing and selectively applying to form a plurality of layers of particulate material with the applied binder solution, and curing the applied binder solution in the plurality of layers of particulate material with the applied binder solution to evaporate the solvent and form a green body part.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 2, 2021
    Applicant: General Electric Company
    Inventors: Arunkumar Natarajan, Kwok Pong Chan, William C. Alberts, Xi Yang, Mary Kathryn Thompson
  • Publication number: 20210371641
    Abstract: In various embodiments, a water-based binder solution for use in additive manufacturing, includes a thermoplastic binder. The thermoplastic binder includes a first polymer strand having a weight average molecular weight (Mw) of from greater than or equal to 5,000 g/mol to less than or equal to 15,000 g/mol, a second polymer strand having a weight average molecular weight of from greater than or equal to 10,000 g/mol to less than or equal to 50,000 g/mol, and a third polymer strand having a weight average molecular weight of from greater than or equal to 1,000 g/mol to less than or equal to 5,000 g/mol. The binder solution further comprises from greater than or equal to 0.1 wt % to less than or equal to 5 wt % of a non-aqueous solvent having a boiling point of greater than 100° C.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 2, 2021
    Applicant: General Electric Company
    Inventors: Arunkumar Natarajan, William C. Alberts, Vadim Bromberg
  • Publication number: 20210370589
    Abstract: A method of manufacturing comprises depositing a layer of a powder on a working surface and selectively depositing a water-based binder solution comprising from 0.1 wt % to 5 wt % of a non-aqueous solvent having a boiling point of greater than 100° C. and less than or equal to 175° C. at 1 atm and a thermoplastic binder comprises a first polymer strand including a first functional group and a second polymer strand including a second functional group into the layer of powder in a pattern representative of a structure of a part. The method further comprises non-covalently coupling the first and second polymer strands together via interaction between the first and second functional groups to form a green body part.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 2, 2021
    Applicant: General Electric Company
    Inventors: Arunkumar Natarajan, Kwok Pong Chan, William C. Alberts, Vadim Bromberg
  • Publication number: 20210370588
    Abstract: A method of manufacturing a green body part comprises depositing a layer of a powder on a working surface; and selectively depositing a binder solution comprising a thermoplastic binder, a fluorescent material, and a binder medium into the layer of powder in a pattern representative of a structure of a layer of the green body part. The thermoplastic binder comprises one or more polymer strands dissolved in a solvent medium having an average molecular weight from greater than or equal to 7,000 g/mol to less than or equal to 100,000 g/mol. Binder solutions comprising fluorescent material and green body parts adhered together using the same are also disclosed.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 2, 2021
    Applicant: General Electric Company
    Inventors: Arunkumar Natarajan, Joshua Tyler Mook, Kwok Pong Chan, William C. Alberts, Vadim Bromberg
  • Patent number: 11014633
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 25, 2021
    Inventors: Gerald C. Miller, Wallace R. Binford, William C. Alberts
  • Patent number: 10538292
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: January 21, 2020
    Inventors: Gerald C. Miller, Wallace R. Binford, William C. Alberts
  • Patent number: 9745025
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: August 29, 2017
    Assignee: COASTAL CARGO COMPANY
    Inventors: Gerald C. Miller, Wallace R. Binford, William C. Alberts
  • Patent number: 9227247
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: January 5, 2016
    Assignee: Coastal Cargo Company Inc.
    Inventors: Wallace R. Binford, Gerald C. Miller, William C. Alberts
  • Patent number: 8632296
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: January 21, 2014
    Assignee: Coastal Cargo Company, Inc.
    Inventors: Wallace R. Binford, Gerald C. Miller, William C. Alberts
  • Patent number: 8267638
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 18, 2012
    Assignee: Coastal Cargo Company, Inc.
    Inventors: Wallace R. Binford, Gerald C. Miller, William C. Alberts
  • Patent number: 7780397
    Abstract: A method and apparatus for rapid loading stacks of items aboard vessels which can include rotating palletized items to depalletize the items, and then placing the items on a lifting robot, lifting the robot and items into the hold of a vessel, removing the items from the robot using a load push lift truck, and then using the load push lift truck to stow the items in a stowage location. The empty robot can be removed from the hold of the vessel and put in a position to receive a another depalletized stack of cartons. In one option the robot has a plurality of fork channels for receiving the blades of a load push lift truck along with receiving the blades or a rotating lift truck.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 24, 2010
    Assignee: Coastal Cargo Company, Inc.
    Inventors: Wallace R. Binford, Gerald C. Miller, William C. Alberts
  • Patent number: 7498728
    Abstract: At least one support tine, disposed generally in parallel to the force sensing tines of a DETF, is added to increase the stiffness of the structure for resisting various strains during assembly. Once the bonding operation is complete, the support tine(s) are cut or broken away from the structure to leave the remaining structure relatively strain free for operation.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 3, 2009
    Assignee: Pressure Systems, Inc.
    Inventor: William C. Albert
  • Publication number: 20070295088
    Abstract: At least one support tine, disposed generally in parallel to the force sensing tines of a DETF, is added to increase the stiffness of the structure for resisting various strains during assembly. Once the bonding operation is complete, the support tine(s) are cut or broken away from the structure to leave the remaining structure relatively strain free for operation.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Inventor: William C. Albert
  • Publication number: 20040016307
    Abstract: A force sensor apparatus includes a vibrating beam and first and second isolator mass members that supports ends of the vibrating beam. The first and second isolator mass members are configured symmetrically relative to an axis that intersects the vibrating beam at an angle other than 90 degrees. First and second end mounts connect respectively to the first and second isolator mass members. Each isolator mass member has a center of gravity. Each isolator mass member is shaped so that it can be massive (e.g., along the x-axis direction) while at the same time having its center of gravity at an optimal location so that undesirable beam forces and moments that would otherwise transfer vibrating beam energy to the end mounts are cancelled.
    Type: Application
    Filed: July 24, 2002
    Publication date: January 29, 2004
    Inventor: William C. Albert
  • Patent number: 6450032
    Abstract: A two-piece vibrating beam force sensor is created by utilizing one thickness of quartz for the outer mounting structure. This outer mounting structure in the case of a pressure sensor includes the mounting structure, the flexure beams and the lever arm and, in the case of an acceleration sensor, includes the mounting structure, the parallel flexure beams and the proof mass. An inner quartz structure made of a double-ended tuning fork vibrating beam assembly which provides an electrical output indicative of tension or compression applied to the beam assembly. The vibrating beam assembly is mounted on the outer quartz structure with epoxy resin or low melting temperature glass frit and suitable electrodes for stimulating the vibrating beams into vibration are provided. The resultant structure is an inexpensive, easily produced, yet highly accurate vibrating beam force sensor.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: September 17, 2002
    Assignee: Pressure Systems, Inc.
    Inventor: William C. Albert
  • Patent number: 5596145
    Abstract: A monolithic resonator for a vibrating beam device, either an accelerometer or a pressure transducer, includes an outer structure and an inner structure. The outer structure includes a mounting structure, a proof mass or pressure transfer structure and a plurality of flexure beams parallel for the accelerometer and perpendicular for the pressure transducer, extending between the mounting and either proof mass or pressure transfer structure. The inner structure is connected to the outer structure and contains isolator masses, isolator beams and a vibrating beam. The outer structure has a thickness greater than the intermediate thickness of the isolator masses which is in turn thicker than the inner structure thickness of the isolator beams and vibrating beam. The intermediate thickness is independently selected to achieve the ideal mass requirements of the vibration isolation mechanism.
    Type: Grant
    Filed: September 29, 1994
    Date of Patent: January 21, 1997
    Assignee: AlliedSignal Inc.
    Inventors: William C. Albert, Herbert T. Califano
  • Patent number: 5334901
    Abstract: A vibrating beam accelerometer contains an inner structure having a vibrating beam extending between a pair of isolator masses which are connected via isolator beams to a pair of structures, an outer structure having flexure beams extending between a mount structure and a proof mass structure and a peripheral seal structure surrounding said inner structure and said outer structure. Seal plates containing a ring of glass frit material sandwich the above assembly. An electrode pattern termination extends from the above assembly, through the ring of glass frit material, to electronic circuitry containing an oscillator.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: August 2, 1994
    Assignee: AlliedSignal Inc.
    Inventors: William C. Albert, Herbert T. Califano
  • Patent number: 5109175
    Abstract: A monolithic resonator structure for a vibrating beam force sensor, comprising an accelerometer and pressure transducer, is provided which comprises an outer structure including a mounting structure, a force transfer structure, a plurality of flexure beams extending between the mounting and force transfer structures; and an inner structure including a vibrating beam extending between the mounting structure and the force transfer structure. The monolithic resonator is non-planar in that the outer structure has a thickness greater than said inner structure.
    Type: Grant
    Filed: September 14, 1990
    Date of Patent: April 28, 1992
    Assignee: Lucas Schaevitz Inc.
    Inventor: William C. Albert
  • Patent number: 4980598
    Abstract: A monolithic resonator for a vibrating beam accelerometer is provided which comprises an outer structure including a mounting structure, a proof mass structure, a plurality of flexure beams extending between the mounting and proof mass structures; and an inner structure including first and second isolator masses, first and second isolator beams connected to one portion of the isolator masses, respectively, and a vibrating beam extending between other portions of the isolator masses. The monolithic resonator is non-planar in that the outer structure has a thickness greater than said inner structure.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: December 25, 1990
    Assignee: Lucas Schaevitz Inc.
    Inventor: William C. Albert