Patents by Inventor William C. Baird

William C. Baird has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220196514
    Abstract: Exemplary embodiments disclosed herein are directed to systems and methods by which the contents of a container, such as the level of liquid nitrogen in one or more liquid nitrogen storage containers, can be locally and/or remotely monitored, and alerts can be generated if a leak is detected. The weight of the container, or a combination of the weight and the temperature of the container, may be monitored with respect to detecting a leak.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 23, 2022
    Inventors: William C. Baird, IV, Chad A. Johnson, William C. Baird, III, Justin Funk, Nathan Funk
  • Patent number: 11187611
    Abstract: Exemplary embodiments disclosed herein are directed to systems and methods by which the level of liquid nitrogen in one or more liquid nitrogen storage containers can be monitored, leaks may be detected and reported, and ideal container fill level may be indicated.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: November 30, 2021
    Inventors: William C. Baird, IV, Chad A. Johnson, William C. Baird, III, Justin Funk, Nathan Funk
  • Publication number: 20200386649
    Abstract: Exemplary embodiments disclosed herein are directed to systems and methods by which the level of liquid nitrogen in one or more liquid nitrogen storage containers can be monitored, leaks may be detected and reported, and ideal container fill level may be indicated.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: William C. Baird, IV, Chad A. Johnson, William C. Baird, III, Justin Funk, Nathan Funk
  • Patent number: 10753821
    Abstract: Exemplary embodiments disclosed herein are directed to systems and methods by which the level of liquid nitrogen in one or more liquid nitrogen storage containers can be monitored and leaks may be detected and reported.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: August 25, 2020
    Inventors: William C. Baird, IV, Chad A. Johnson, William C. Baird, III, Justin Funk, Nathan Funk
  • Publication number: 20200072698
    Abstract: Exemplary embodiments disclosed herein are directed to systems and methods by which the level of liquid nitrogen in one or more liquid nitrogen storage containers can be monitored and leaks may be detected and reported.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 5, 2020
    Inventors: William C. Baird, IV, Chad A. Johnson, William C. Baird, III, Justin Funk, Nathan Funk
  • Patent number: 8894845
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. The processes herein allow a simple and effective method for removing the majority of coke formed in the alkali metal reagent reactions with the hydrocarbon feedstreams. This makes it cost effective to run such processes at higher severities (which result in higher coke production) thereby resulting in increased amounts of valuable converted hydrocarbon product yields. The process improvements herein may also be used to increase total throughput through a unit due to the ability to effectively manage higher coke content in the reaction products.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Walter David Vann, Daniel Paul Leta, Jonathan Martin McConnachie, Richard Alan Demmin, Douglas Wayne Hissong, William C. Baird, Jr., Roby Bearden, Jr., James Ronald Bielenberg, Howard Freund, Chris Aaron Wright, Michael Francis Raterman, James Ronald Rigby, Brandon Thomas Stone
  • Patent number: 8696890
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jorge L. Soto, Michael Raterman, Daniel P. Leta, Walter D. Vann, Lu Han, Jonathan M. McConnachie, James R. Bielenberg, William C. Baird, Jr., Roby Bearden, Jr.
  • Patent number: 8673132
    Abstract: The present invention relates to a process for regeneration of alkali metal salt reagent used in desulfurization of heavy oil feedstreams. In particular, the present invention relates to a process utilizing potassium hydroxide as an external supply reagent to a heavy oil conversion process and in-situ conversion of the spent reactants utilized in such process into a potassium sulfide reagent for reintroduction into the heavy oil conversion process.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, William C. Baird, Jr., Walter D. Vann, Jorge L. Soto
  • Patent number: 8404106
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 26, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, Jr., Roby Bearden, Jr.
  • Publication number: 20120234728
    Abstract: The present invention relates to a process for regeneration of alkali metal salt reagent used in desulfurization of heavy oil feedstreams. In particular, the it present invention relates to a process utilizing potassium hydroxide as an external supply reagent to a heavy oil conversion process and in-situ conversion of the spent reactants utilized in such process into a potassium sulfide reagent for reintroduction into the heavy oil conversion process.
    Type: Application
    Filed: March 28, 2012
    Publication date: September 20, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, William C. Baird, JR., Walter D. Vann, Jorge L. Soto
  • Publication number: 20110147274
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, JR., Roby Bearden, JR.
  • Publication number: 20110147273
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Michael Raterman, Daniel P. Leta, Walter D. Vann, Lu Han, Jonathan M. McConnachie, James R. Bielenberg, William C. Baird, JR., Roby Bearden, JR.
  • Patent number: 7612012
    Abstract: The hydrogenation activity of a heteroatom removal catalyst, having activity for both heteroatom removal and hydrogenation, is selectively suppressed by a treatment which comprises contacting the catalyst with (i) hydrogen, (ii) a selectively deactivating agent that suppresses the catalyst's hydrogenation activity, and (iii) a protective agent, such as CO, that preserves and protects the heteroatom removal activity during the treatment. This may be achieved in a reactor while it is on-line and removing heteroatoms from a hydrocarbon feed.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: November 3, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Michele S. Touvelle, William C. Baird, Jr.
  • Patent number: 7074735
    Abstract: The hydrogenation activity of a heteroatom removal catalyst, having activity for both heteroatom removal and hydrogenation, is selectively suppressed by a treatment which comprises contacting the catalyst with (i) hydrogen, (ii) a selectively deactivating agent that suppresses the catalyst's hydrogenation activity, and (iii) a protective agent, such as CO, that preserves and protects the heteroatom removal activity during the treatment. This may be achieved in a reactor while it is on-line and removing heteroatoms from a hydrocarbon feed.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Michele S. Touvelle, William C. Baird, Jr.
  • Patent number: 6723230
    Abstract: A process to regenerate iron-based hydrogen sulfide sorbents using steam. The steam is preferably mixed with hydrogen-containing gas and/or an inert gas, such as nitrogen. In a preferred embodiment, the sorbent is first exposed to the steam and then exposed to a hydrogen-containing gas at regeneration conditions.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: April 20, 2004
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Jingguang G. Chen, Leo D. Brown, William C. Baird, Jr., Gary B. McVicker, Edward S. Ellis, Michele S. Touvelle, Darryl P. Klein, David E. W. Vaughan
  • Patent number: 6683020
    Abstract: Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, along with catalysts which can be used in that process. The ring opening is accomplished using a ring opening catalyst comprising Ir on a composite support of alumina and acidic silica-alumina molecular sieve. The ring opening activity is not significantly deactivated by exposure to oxygen at greater than about 250° C.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: January 27, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William C. Baird, Jr., Darryl P. Klein, Jingguang G. Chen, Gary B. McVicker
  • Publication number: 20030220186
    Abstract: The hydrogenation activity of a heteroatom removal catalyst, having activity for both heteroatom removal and hydrogenation, is selectively suppressed by a treatment which comprises contacting the catalyst with (i) hydrogen, (ii) a selectively deactivating agent that suppresses the catalyst's hydrogenation activity, and (iii) a protective agent, such as CO, that preserves and protects the heteroatom removal activity during the treatment. This may be achieved in a reactor while it is on-line and removing heteroatoms from a hydrocarbon feed.
    Type: Application
    Filed: February 27, 2003
    Publication date: November 27, 2003
    Inventors: Garland B. Brignac, Michele S. Touvelle, William C. Baird
  • Patent number: 6649043
    Abstract: A process to regenerate metal oxide desulfurization sorbents using an oxidizing and reducing atmosphere. The sorbents may be mono- or multi-metallic in nature, and preferably comprise Cu, Ni and/or Co. If desired, secondary metals may be incorporated to increase regeneration efficiency and/or capacity. Other additives may be used to suppress hydrocarbon cracking. A sorbent containing Zn may be combined with an Fe, Co, Ni, Mo, or W catalyst or a noble metal catalyst and combinations thereof.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: November 18, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jingguang G. Chen, Leo D. Brown, William C. Baird, Jr., Gary B. McVicker, Edward S. Ellis, Michele S. Touvelle, Darryl P. Klein, David E. W. Vaughan
  • Publication number: 20030178343
    Abstract: A process to regenerate a spent hydrogen sulfide sorbent comprised of a sorbent metal selected from Fe, Ni, Co, and Cu on a refractory oxide support using hydrogen gas. The sorbent metal component may be mono- or multi-metallic in nature, and preferably comprise Ni and/or Co. If desired, secondary metals may be incorporated to increase regeneration efficiency and/or capacity. Other additives suppress hydrocarbon cracking.
    Type: Application
    Filed: January 6, 2003
    Publication date: September 25, 2003
    Inventors: Jingguang G. Chen, Leo D. Brown, William C. Baird, Gary B. McVicker, Edward S. Ellis, Michele S. Touvelle, Darryl P. Klein, David E. W. Vaughan
  • Patent number: 6623626
    Abstract: Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, along with catalysts which can be used in that process. The ring opening is accomplished using a ring opening catalyst system which combines an Ir ring opening catalyst with a Pt and Pd catalyst. The combination of the Pt and Pd-containing catalyst with an Ir-containing catalyst incorporates desirable isomerization activity and also results in substantial ring opening activity that enables Ir to be loaded at a level that is substantially below that of Ir-only ring opening processes.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 23, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William C. Baird, Jr., Jingguang G. Chen, Gary B. McVicker