Patents by Inventor William C. Ellis

William C. Ellis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12275679
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: May 9, 2024
    Date of Patent: April 15, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Patent number: 12202914
    Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: January 21, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
  • Publication number: 20240286973
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Application
    Filed: May 9, 2024
    Publication date: August 29, 2024
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Patent number: 12043690
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof, and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: July 23, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 12030975
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: July 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 12017970
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: September 1, 2023
    Date of Patent: June 25, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Patent number: 11999679
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Grant
    Filed: August 24, 2023
    Date of Patent: June 4, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Publication number: 20230416169
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 28, 2023
    Inventors: Masud M. Monwar, Jared Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Publication number: 20230391700
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Patent number: 11767279
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: September 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Patent number: 11753358
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Publication number: 20230183400
    Abstract: Techniques are provided for catalyst preparation. A method includes heating a mixture of one or more transition metal compounds and an oxide support or a chromium containing oxide support to a temperature or a set of temperatures that enables the a transition metal compound of the one or more transition metal compounds to sublime, melt, or thermally decompose, such that a transition metal of the one or more transition metal compounds reacts with and is deposited onto a surface of the oxide support or the chromium containing oxide support to form a catalyst, and activating the catalyst. The catalyst is configured to facilitate a reaction that produces a target inorganic material.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 15, 2023
    Inventors: William C. Ellis, Max P. McDaniel, Deloris R. Gagan
  • Publication number: 20220356135
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Application
    Filed: July 14, 2022
    Publication date: November 10, 2022
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Publication number: 20220348527
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Patent number: 11440864
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 13, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Max P. McDaniel, Carlos A. Cruz, Masud M. Monwar, Jared L. Barr, William C. Ellis
  • Patent number: 11440865
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: September 13, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared L. Barr, Kathy S. Clear, William C. Ellis
  • Patent number: 11384171
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof, e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof, and f) a solvent.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: July 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11338278
    Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: May 24, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
  • Patent number: 11325996
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. Also disclosed are olefin polymerization catalysts and pre-catalyst compositions thereof and methods of preparing olefin polymerization catalysts and pre-catalyst compositions thereof.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11267908
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof; and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan