Patents by Inventor William Crudge

William Crudge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9221776
    Abstract: A method for the epoxidation of an olefin comprising reacting a feed gas composition containing an olefin, oxygen, and a halocarbon moderator having a first moderator concentration M1 in the presence of an epoxidation catalyst at a first temperature T1; increasing the first temperature to a second temperature T2; and increasing the first moderator concentration to a second moderator concentration M2, wherein the second moderator concentration is defined by: M2=M1(1+r)T2?T1 wherein the temperature has the units of degrees Celsius, and r is a constant factor which is in the range of from 0.001% to 100%.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 29, 2015
    Assignee: Scientific Design Company, Inc.
    Inventors: Andrew D. Schmitz, William Crudge
  • Publication number: 20150175565
    Abstract: A method for the epoxidation of an olefin comprising reacting a feed gas composition containing an olefin, oxygen, and a halocarbon moderator having a first moderator concentration M1 in the presence of an epoxidation catalyst at a first temperature T1; increasing the first temperature to a second temperature T2; and increasing the first moderator concentration to a second moderator concentration M2, wherein the second moderator concentration is defined by: M2=M1(1+r)T2?T1 wherein the temperature has the units of degrees Celsius, and r is a constant factor which is in the range of from 0.001% to 100%.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 25, 2015
    Applicant: Scientific Design Company, Inc.
    Inventors: Andrew D. Schmitz, William Crudge
  • Patent number: 8053609
    Abstract: A solid (i.e., heterogeneous) catalyst useful for preparing an alkylene glycol from the corresponding alkylene oxide as well as a process for the catalytic hydration of an alkylene oxide to an alkylene glycol utilizing such a catalyst are provided. The catalyst of the present invention is based on an ion exchange resin including polystyrene crosslinked with from about 2 to about 10 weight (wt.) % divinyl benzene. The ion exchange resin further includes quaternary ammonium groups or quaternary phosphonium groups. The process includes reacting water and an alkylene oxide in at least one reactor under conditions to form an alkylene glycol, wherein the at least one reactor includes a catalyst based on an ion exchange resin that includes polystyrene crosslinked with from about 2 to about 10 weight (wt.) % divinyl benzene.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: November 8, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: William Crudge, Jaap Willem van Hal, Xiankuan Zhang
  • Patent number: 7663005
    Abstract: A catalytic process for preparing a monoalkylene glycol from a corresponding alkylene oxide utilizing an ion exchange resin and a reactor in which an upflow process is used is provided. In particular, the process includes reacting water and an alkylene oxide in at least one reactor under conditions to form an alkylene glycol, wherein the at least one reactor includes an ion exchange resin and the reactor is operating in an upflow direction.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: February 16, 2010
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: William Crudge, Jaap Willem van Hal, Xiankuan Zhang
  • Publication number: 20090099393
    Abstract: A solid (i.e., heterogeneous) catalyst useful for preparing an alkylene glycol from the corresponding alkylene oxide as well as a process for the catalytic hydration of an alkylene oxide to an alkylene glycol utilizing such a catalyst are provided. The catalyst of the present invention is based on an ion exchange resin including polystyrene crosslinked with from about 2 to about 10 weight (wt.) % divinyl benzene. The ion exchange resin further includes quaternary ammonium groups or quaternary phosphonium groups. The process includes reacting water and an alkylene oxide in at least one reactor under conditions to form an alkylene glycol, wherein the at least one reactor includes a catalyst based on an ion exchange resin that includes polystyrene crosslinked with from about 2 to about 10 weight (wt.) % divinyl benzene.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 16, 2009
    Applicant: SD LIZENZVERWERTUNGSGESELLSCHAFT MBH & CO. KG
    Inventors: William Crudge, Jaap Willem van Hal, Xiankuan Zhang
  • Publication number: 20080300431
    Abstract: A catalytic process for preparing a monoalkylene glycol from a corresponding alkylene oxide utilizing an ion exchange resin and a reactor in which an upflow process is used is provided. In particular, the process includes reacting water and an alkylene oxide in at least one reactor under conditions to form an alkylene glycol, wherein the at least one reactor includes an ion exchange resin and the reactor is operating in an upflow direction.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 4, 2008
    Applicant: SD LIZENZVERWERTUNGSGESELLSCHAFT MBH & CO. KG
    Inventors: William Crudge, Jaap Willem van Hal, Xiankuan Zhang