Patents by Inventor William David Lynn

William David Lynn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8604776
    Abstract: Power transmission monitoring systems includes rotation speed sensors mounted to hubs of a power transmission pulley. A sensor comprises a rotation sensing device, and a controller receiving rotation data therefrom and determining rotation speed of the pulley. A transmitter transmits rotational speed of the pulley to a receiver, which may include or be connected to a device that compares the rotational speed to rotational speed in transmissions from other sensors to determine slip in the power transmission system. The rotation speed sensing device may be an accelerometer, or a gravitational torque harvester. A harvester might include a rotor body rotating with the pulley and mounting induction coils, and a gravitational torque stator mounting an induction magnet and including an air vane damper maintaining the stator stationary with respect to the rotor, through air resistance. The transmissions may be employed to monitor, maintain and repair the power transmissions system.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: December 10, 2013
    Assignee: Schrader Electronics Ltd.
    Inventor: William David Lynn
  • Publication number: 20110316525
    Abstract: Power transmission monitoring systems includes rotation speed sensors mounted to hubs of a power transmission pulley. A sensor comprises a rotation sensing device, and a controller receiving rotation data therefrom and determining rotation speed of the pulley. A transmitter transmits rotational speed of the pulley to a receiver, which may include or be connected to a device that compares the rotational speed to rotational speed in transmissions from other sensors to determine slip in the power transmission system. The rotation speed sensing device may be an accelerometer, or a gravitational torque harvester. A harvester might include a rotor body rotating with the pulley and mounting induction coils, and a gravitational torque stator mounting an induction magnet and including an air vane damper maintaining the stator stationary with respect to the rotor, through air resistance. The transmissions may be employed to monitor, maintain and repair the power transmissions system.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Inventor: William David Lynn
  • Patent number: 8072321
    Abstract: A pressure sensing device, such as a tire pressure monitoring unit comprises a pressure sensor for measuring pressure of a fluid, such as air or an inert gas, in an environment external to the device, such as within the cavity of a tire. A hollow resonator, or standing wave tube, is coupled to the pressure sensor. The resonator has a free end exposed to the external environment to the extent that pressure variations in the fluid are propagated through the hollow resonator to the pressure sensor via the free end. The hollow resonator has a resonant frequency substantially matching a target frequency such that resonance is established in the tube at the resonant frequency in response to the presence of an audio signal in the fluid having a frequency that substantially matches the target frequency.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: December 6, 2011
    Assignee: Schrader Electronics. Ltd.
    Inventor: William David Lynn
  • Publication number: 20100102944
    Abstract: A pressure sensing device, such as a tire pressure monitoring unit comprises a pressure sensor for measuring pressure of a fluid, such as air or an inert gas, in an environment external to the device, such as within the cavity of a tire. A hollow resonator, or standing wave tube, is coupled to the pressure sensor. The resonator has a free end exposed to the external environment to the extent that pressure variations in the fluid are propagated through the hollow resonator to the pressure sensor via the free end. The hollow resonator has a resonant frequency substantially matching a target frequency such that resonance is established in the tube at the resonant frequency in response to the presence of an audio signal in the fluid having a frequency that substantially matches the target frequency.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Inventor: William David Lynn