Patents by Inventor William David Mawby

William David Mawby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10514321
    Abstract: Systems and methods for improving the uniformity of a tire based on estimated process harmonic magnitudes for one or more process effects are provided. Magnitudes of process harmonics associated with one or more candidate process effects can be determined from the observed magnitudes of one or more harmonics of measured uniformity parameters. The estimated process harmonic magnitude(s) can be determined without requiring phase angle or azimuth information associated with the observed magnitudes. The estimated process harmonic magnitude(s) can be determined by identifying a process harmonic magnitude pattern for identified candidate process effects. A model can be constructed correlating the candidate magnitudes specified by the process harmonic magnitude pattern with observed magnitudes of corresponding harmonics of a measured uniformity waveform. Regression or programming techniques can be used to estimate coefficients associated with candidate magnitude terms in the model.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 24, 2019
    Assignees: Compagnie Generale des Etablissements Michelin, Michelin Recherche et Technique, S.A.
    Inventor: William David Mawby
  • Patent number: 10416044
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More particularly, a magnitude of a uniformity parameter can be obtained for each tire in a set of a plurality of tires. The magnitudes associated with the set of tires can be transformed according to a probability distribution function (e.g. a Weibull distribution function) to obtain a set of transformed magnitudes. Parameters associated with a probability distribution function can be estimated based at least in part on the transformed magnitudes. Parameters associated with the probability distribution function can be used to determine data indicative of a measurement error in the uniformity measurements attributable to a measurement process harmonic. The data indicative of the measurement error can be used to correct uniformity measurements obtained for tires and to modify tire manufacture based at least in part on the corrected measurements.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 17, 2019
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventor: William David Mawby
  • Patent number: 10352828
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More specifically, one or more characteristics of a composite uniformity parameter can be determined from uniformity summary data (e.g. uniformity vectors) associated with a plurality of harmonics of the composite uniformity parameter. For instance, a peak to peak range of a composite uniformity parameter and/or a distribution of amplitudes of a composite uniformity parameter for a set of tires can be determined from uniformity vectors associated with selected harmonics of the composite uniformity parameter. According to example aspects of the present disclosure, the one or more characteristics of the composite uniformity parameter can be determined using multivariate normal distributions (e.g. bivariate normal distributions) of the uniformity summary data. Once identified, the one or more characteristics can be used to modify tire manufacture to improve tire uniformity.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: July 16, 2019
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventor: William David Mawby
  • Patent number: 10279636
    Abstract: Systems and methods for improving the uniformity of a tire by identifying the effects of tooling elements used during tire manufacture on tire uniformity, such as effects resulting from building drum elements, form elements, mold elements, and other tooling elements, are provided. More particularly, a tooling signature of a tooling element can be identified by analyzing a plurality of uniformity waveforms measured for a set of tires manufactured using the tooling element. The tooling signature can be analyzed and used to modify tire manufacture to improve the uniformity of a tire.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 7, 2019
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: William David Mawby, Jonathan Sauls, James Michael Traylor
  • Patent number: 10260993
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More specifically, one or more characteristics of a composite uniformity parameter can be determined from harmonic magnitudes associated with a plurality of harmonics of the composite uniformity parameter. For instance, a range of a composite uniformity parameter and/or a distribution of amplitudes of a composite uniformity parameter for a set of tires can be determined from harmonic magnitudes associated with selected harmonics of the composite uniformity parameter. According to example aspects of the present disclosure, the one or more characteristics of the composite uniformity parameter can be determined using Weibull distributions of the harmonic magnitudes. Once identified, the one or more characteristics can be used to modify tire manufacture to improve tire uniformity.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 16, 2019
    Assignee: Compagnie Generale des Etablissements Michelin
    Inventor: William David Mawby
  • Patent number: 10247640
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More particularly, one or more parameters of a measurement process harmonic contributing to uniformity measurements performed for a tire can be identified. The measurement process harmonic can be a process harmonic effect associated with the acquisition of uniformity measurements of a tire, such as a process harmonic effect associated out-of-roundness of a road wheel used to load a tire during uniformity measurement in a uniformity measurement machine. The measurement process harmonic can result solely from the acquisition of uniformity measurements and may not contribute to actual tire non-uniformity. Once identified, the one or more parameters associated with the measurement process harmonic can be used to correct the uniformity measurements of the tire to account for the measurement process harmonic. Tire manufacture can then be modified to improve tire uniformity based on the corrected measurements.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 2, 2019
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventor: William David Mawby
  • Patent number: 10126738
    Abstract: Methods and systems for improving tire uniformity through identification of characteristics of one or more candidate process effects are provided. The magnitudes of process harmonics associated with one or more candidate process effects can be identified by combining uniformity measurements for a set of tires to achieve an enhanced resolution for a sampling of the process harmonic. The enhanced resolution approach can combine uniformity measurements for a set of a plurality of tires that are slightly offset from one another to generate a composite process harmonic sampling. In particular, the composite process harmonic sampling can be generated by aligning the uniformity measurements for each tire in the set of tires based on the azimuthal location of the maximum magnitude of the process harmonic on each tire. The magnitude of the process harmonic can then be determined using the composite process harmonic sampling.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: November 13, 2018
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventor: William David Mawby
  • Patent number: 10073009
    Abstract: Methods and systems for improving tire uniformity through identification of uniformity attributes, such as process harmonics are provided. More particularly, uniformity measurements acquired according to a non-uniform sampling pattern can be obtained and analyzed to estimate one or more process harmonics (e.g. the magnitude of the process harmonic). The non-uniform sampling pattern can specify the acquisition of uniformity measurements in a varying or irregular manner about one or more revolutions of the tire. For instance, the non-uniform sampling pattern can specify a random spacing between data points. The uniformity attributes estimated from the uniformity measurements can be used to modify the manufacture of tires to improve tire uniformity.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: September 11, 2018
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: William David Mawby, Ross Kunz
  • Patent number: 9937677
    Abstract: Systems and methods for improving the uniformity of a tire by separating uniformity contributions associated discrete effects, such as effects resulting from product joints, from continuous effects are provided. For instance, uniformity contributions associated with the product joints are determined by analyzing a uniformity waveform to process the uniformity waveform into one or more continuous components and at least one joint component. Knowledge of the uniformity contributions associated with product joints in the tire can be used, for instance, to make structural improvements in the manufacture of the tire, to actively manage the joint-making process, and to perform dynamic correction of joint effects.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 10, 2018
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventor: William David Mawby
  • Patent number: 9823153
    Abstract: Systems and methods for improving tire uniformity using estimates of process harmonic magnitude(s) from static balance measurements for a set of tires are provided. In particular, a sequence of observed magnitudes of static balance can be obtained for a set of tires. The sequence of observed magnitudes can be analyzed in conjunction with a baseline magnitude pattern associated with the process harmonic to derive a magnitude of the process harmonic. The magnitude of the process harmonic can be used to improve the uniformity of tires.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 21, 2017
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: William David Mawby, Steve Simons, James Michael Traylor, Anton Felipe Thomas, Jonathan Sauls
  • Publication number: 20170241867
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More specifically, one or more characteristics of a composite uniformity parameter can be determined from harmonic magnitudes associated with a plurality of harmonics of the composite uniformity parameter. For instance, a range of a composite uniformity parameter and/or a distribution of amplitudes of a composite uniformity parameter for a set of tires can be determined from harmonic magnitudes associated with selected harmonics of the composite uniformity parameter. According to example aspects of the present disclosure, the one or more characteristics of the composite uniformity parameter can be determined using Weibull distributions of the harmonic magnitudes. Once identified, the one or more characteristics can be used to modify tire manufacture to improve tire uniformity.
    Type: Application
    Filed: July 31, 2014
    Publication date: August 24, 2017
    Applicants: Compagnie Generale des Etablissements Michelin, Michelin Recherch et Technique S.A.
    Inventor: William David Mawby
  • Publication number: 20170241869
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More particularly, one or more parameters of a measurement process harmonic contributing to uniformity measurements performed for a tire can be identified. The measurement process harmonic can be a process harmonic effect associated with the acquisition of uniformity measurements of a tire, such as a process harmonic effect associated out-of-roundness of a road wheel used to load a tire during uniformity measurement in a uniformity measurement machine. The measurement process harmonic can result solely from the acquisition of uniformity measurements and may not contribute to actual tire non-uniformity. Once identified, the one or more parameters associated with the measurement process harmonic can be used to correct the uniformity measurements of the tire to account for the measurement process harmonic. Tire manufacture can then be modified to improve tire uniformity based on the corrected measurements.
    Type: Application
    Filed: July 31, 2014
    Publication date: August 24, 2017
    Inventor: William David Mawby
  • Publication number: 20170241868
    Abstract: Methods and systems for improving the uniformity of a tire 200 are provided. More particularly, a magnitude of a uniformity parameter can be obtained for each tire in a set of a plurality of tires. The magnitudes associated with the set of tires can be transformed according to a probability distribution function (e.g. a Weibull distribution function) to obtain a set of transformed magnitudes. Parameters associated with a probability distribution function can be estimated based at least in part on the transformed magnitudes. Parameters associated with the probability distribution function can be used to determine data indicative of a measurement error in the uniformity measurements attributable to a measurement process harmonic. The data indicative of the measurement error can be used to correct uniformity measurements obtained for tires and to modify tire manufacture based at least in part on the corrected measurements.
    Type: Application
    Filed: July 31, 2014
    Publication date: August 24, 2017
    Inventor: William David Mawby
  • Publication number: 20170241866
    Abstract: Methods and systems for improving the uniformity of a tire are provided. More specifically, one or more characteristics of a composite uniformity parameter can be determined from uniformity summary data (e.g. uniformity vectors) associated with a plurality of harmonics of the composite uniformity parameter. For instance, a peak to peak range of a composite uniformity parameter and/or a distribution of amplitudes of a composite uniformity parameter for a set of tires can be determined from uniformity vectors associated with selected harmonics of the composite uniformity parameter. According to example aspects of the present disclosure, the one or more characteristics of the composite uniformity parameter can be determined using multivariate normal distributions (e.g. bivariate normal distributions) of the uniformity summary data. Once identified, the one or more characteristics can be used to modify tire manufacture to improve tire uniformity.
    Type: Application
    Filed: July 31, 2014
    Publication date: August 24, 2017
    Inventor: William David Mawby
  • Patent number: 9645052
    Abstract: Systems and methods for improving tire uniformity include identifying at least one candidate process harmonic and corresponding period. A set of uniformity waveforms is then collected for each test tire in a set of one or more test tires. To provide better data for analysis, the collection of waveforms may include multiple waveforms including measurements obtained before and/or after cure, in clockwise and/or counterclockwise rotational directions, and while the tire is loaded and/or unloaded. The uniformity waveforms may be re-indexed to the physical order of the at least one candidate process harmonic, and selected data points within the waveforms may optionally be deleted around a joint effect or other non-sinusoidal effect. The re-indexed, optionally partial, waveforms may then be analyzed to determine magnitude and azimuth estimates for the candidate process harmonics. Aspects of tire manufacture may then be modified in a variety of different ways to account for the estimated process harmonics.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: May 9, 2017
    Assignees: MICHELIN RECHERCHE et TECHNIQUE S.A., COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: William David Mawby, Jimmy Jeter, Jonathan Sauls, James Michael Traylor
  • Publication number: 20160236431
    Abstract: Systems and methods for improving tire uniformity through identification of transient effects contributing to the non-uniformity of a tire are provided. More particularly, uniformity measurements can be obtained for a set of a plurality of tires. The uniformity measurements can include contributions from tire harmonic uniformity effects (e.g. effects attributable to tooling elements used during tire manufacture) as well as process harmonic uniformity effects (e.g. effects attributable to process elements used during tire manufacture). Certain of the tire harmonic uniformity effects can be transient effects that change from tire to tire. For instance, the effect attributable to a curing membrane used during the curing process can transiently change from tire to tire. Aspects of the present disclosure are directed to identifying transient effect contributions to uniformity measurements and improving the uniformity of the tire using the identified transient effect contributions.
    Type: Application
    Filed: November 8, 2013
    Publication date: August 18, 2016
    Inventors: William David MAWBY, James Michael TRAYLOR, Casey APPLEMAN
  • Publication number: 20160238487
    Abstract: Methods and systems for improving tire uniformity through identification of uniformity attributes, such as process harmonics are provided. More particularly, uniformity measurements acquired according to a non-uniform sampling pattern can be obtained and analyzed to estimate one or more process harmonics (e.g. the magnitude of the process harmonic). The non-uniform sampling pattern can specify the acquisition of uniformity measurements in a varying or irregular manner about one or more revolutions of the tire. For instance, the non-uniform sampling pattern can specify a random spacing between data points. The uniformity attributes estimated from the uniformity measurements can be used to modify the manufacture of tires to improve tire uniformity.
    Type: Application
    Filed: November 8, 2013
    Publication date: August 18, 2016
    Inventors: William David MAWBY, Ross KUNZ
  • Publication number: 20160116363
    Abstract: Systems and methods for improving tire uniformity using estimates of process harmonic magnitude(s) from static balance measurements for a set of tires are provided. In particular, a sequence of observed magnitudes of static balance can be obtained for a set of tires. The sequence of observed magnitudes can be analyzed in conjunction with a baseline magnitude pattern associated with the process harmonic to derive a magnitude of the process harmonic. The magnitude of the process harmonic can be used to improve the uniformity of tires.
    Type: Application
    Filed: June 18, 2013
    Publication date: April 28, 2016
    Inventors: William David Mawby, Steve Simons, James Michael Traylor, Anton Felipe Thomas, Jonathan Sauls
  • Publication number: 20160103448
    Abstract: Methods and systems for improving tire uniformity through identification of characteristics of one or more candidate process effects are provided. The magnitudes of process harmonics associated with one or more candidate process effects can be identified by combining uniformity measurements for a set of tires to achieve an enhanced resolution for a sampling of the process harmonic. The enhanced resolution approach can combine uniformity measurements for a set of a plurality of tires that are slightly offset from one another to generate a composite process harmonic sampling. In particular, the composite process harmonic sampling can be generated by aligning the uniformity measurements for each tire in the set of tires based on the azimuthal location of the maximum magnitude of the process harmonic on each tire. The magnitude of the process harmonic can then be determined using the composite process harmonic sampling.
    Type: Application
    Filed: June 18, 2014
    Publication date: April 14, 2016
    Applicant: MICHELIN RECHERCHE et TECHNIQUE S.A.
    Inventor: William David Mawby
  • Publication number: 20160003711
    Abstract: Systems and methods for estimating a uniformity parameter of a tire are provided. For instance, convolution can be used to estimate radial force variation from one or more uniformity parameter measurements, including radial run out parameter measurements and lateral force variation measurements. Deconvolution can be used to estimate radial run out from one or more uniformity parameter measurements, including radial force variation parameter measurements and lateral force variation measurements. The estimated uniformity parameter can be estimated from the measured radial uniformity parameter using one or more models. The one or more models can represent an estimated radial uniformity parameter at a discrete measurement point as a weighted sum of the measured radial uniformity parameter at the discrete measurement point and one or more selected measurement points proximate the discrete measurement point. The measurement points can be selected based on the contact patch length of the tire.
    Type: Application
    Filed: March 29, 2013
    Publication date: January 7, 2016
    Inventors: William David MAWBY, James Michael TRAYLOR