Patents by Inventor William Dawber

William Dawber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6320886
    Abstract: A laser device comprises a non-collinear optical parametric generator (OPG) and a pump wave source (4). The OFG comprises a non-linear crystal (1) fixedly mounted within the generator wherein the relative orientations of the pump wave (3) and each generated wave (5) to an optic axis (2) of the non-linear crystal (1) are substantially such that a point of inflexion is produced in a tuning curve of wavelength versus pump wave orientation of one of the generated waves, such that a broadband spectral output is obtained. This device has many applications including an amplifier for an input seed wave in which the crystal dose not have to be rotated to match the wavelength of the seed wave; or as part of a continuously tuneable narrowband source.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: November 20, 2001
    Assignee: The Secretary of Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britian and Northern Ireland
    Inventors: William Dawber, Jian Wang, Malcolm H Dunn, Cameron F Rae
  • Patent number: 5585714
    Abstract: A broadband electrical signal spectrum analyser comprises a spatial light modulator such as a Bragg cell located within at least one resonant cavity and illuminated by a polychromatic source of light. The signal to be analysed is connected to the Bragg cell. The tuned cavity is arranged to lase the diffracted light to thereby enhance the signal before detection. In one arrangement the cavity is formed by opposed mirrors set at the Bragg angle and one of the mirrors is oscillated through a range of frequencies required by the broadband application. In a second arrangement a plurality of narrow band channels is formed by a fibre optic array. The fibres are arranged such that first ends of the fibres form a linear input array and the second ends form a linear output array. Light at the Bragg angle passes into an appropriate one or more of the output array fibres, passes around the looped fibres to the input array where the light (zero order) is transmitted through the Bragg cell and then back to the fibre loop.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: December 17, 1996
    Assignee: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: William Dawber, Colin J. Flynn, Herbert A. French, Arthur Maitland, Andrew P. Shaw
  • Patent number: 5363221
    Abstract: Light from a laser (10) is divided by a beam splitter (12) to provide signal (15) and reference (14) channels. The signal channel light is expanded (11) to illuminate an acousto-optic (AO) device (13). This leads to a spatial distribution of Doppler shifted frequencies. This spatial distribution then illuminates a spatial light modulator (SLM) (19) such that a number of parallel and discrete optical channels (112) emerge. In a local area network (LAN) the optical signal channels are coupled into a single mode optical fibre (22) and then heterodont to the reference laser light from a further optical fibre (23) in an optical coupler (25). In a receiver the modulated light is detected (32) and the detected signal connected to the transducer of an AO device (35). The AO device (35) is illuminated by a receiver laser light (36) and the emerging modulated light is incident on a focal plane detector array (39) where each detector (310) then receives light corresponding to each of the transmitted channels (311).
    Type: Grant
    Filed: October 16, 1992
    Date of Patent: November 8, 1994
    Assignee: The Secretary of State for Defence in her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Philip Sutton, Andrew P. Shaw, William Dawber, Peter F. Hirst, Brian Condon