Patents by Inventor William Day
William Day has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240232414Abstract: Devices, systems, and methods for allowing parents to view and track smart phone activities of their children can include one or more child software modules. The module can be installed on each child's smart phone. The module can access and extract data from or about more than one of the smart phone's other software applications, including at least two of the following: a texting application, a social media application, an image application that facilitates transmission or reception of images, and a web browser application. The module can further send the extracted data to an analysis server. The module can also monitor location data. Moreover, the system can include an analysis server that can identify potentially harmful language, images, and websites. Further, the system can include a parent portal. The parent portal can receive results from the analysis server.Type: ApplicationFiled: September 25, 2023Publication date: July 11, 2024Inventors: Rowland William Day, II, Eric John Wise, Tienshiao Ma, Manuel Calaycay Palafox, Kelly Chu, Steven Sigler
-
Publication number: 20240135020Abstract: Devices, systems, and methods for allowing parents to view and track smart phone activities of their children can include one or more child software modules. The module can be installed on each child's smart phone. The module can access and extract data from or about more than one of the smart phone's other software applications, including at least two of the following: a texting application, a social media application, an image application that facilitates transmission or reception of images, and a web browser application. The module can further send the extracted data to an analysis server. The module can also monitor location data. Moreover, the system can include an analysis server that can identify potentially harmful language, images, and websites. Further, the system can include a parent portal. The parent portal can receive results from the analysis server.Type: ApplicationFiled: September 24, 2023Publication date: April 25, 2024Inventors: Rowland William Day, II, Eric John Wise, Tienshiao Ma, Manuel Calaycay Palafox, Kelly Chu, Steven Sigler
-
Patent number: 11920453Abstract: A method of dynamically allocating a total amount of produced water (PW) from a reservoir during enhanced oil recovery (EOR) via a low salinity or softened water EOR flood by receiving measurement data; receiving reservoir configuration information comprising: an EOR injection rate associated with one or more EOR injection zones, a disposal zone injection rate associated with one or more disposal injection zones, and a non-reinjection disposal rate associated with one or more non-reinjection disposal routes; determining a blending rate comprising at least a portion of the PW production rate and at least a portion of the low salinity or softened water injection rate to provide a blended injection fluid; blending at least a portion of the PW with at least a portion of the low salinity or softened water at the blending rate; and dynamically allocating the PW production rate among injection and/or non-reinjection routes.Type: GrantFiled: May 10, 2019Date of Patent: March 5, 2024Assignee: BP EXPLORATION OPERATING COMPANY LIMITEDInventors: Stuart William Day, Christopher Kylie Mair
-
Patent number: 11906523Abstract: Disclosed herein are embodiments of a signaling conjugate, embodiments of a method of using the signaling conjugates, and embodiments of a kit comprising the signaling conjugate. The disclosed signaling conjugate comprises a latent reactive moiety and a chromogenic moiety that may further comprise a linker suitable for coupling the latent reactive moiety to the chromogenic moiety. The signaling conjugate may be used to detect one or more targets in a biological sample and are capable of being covalently deposited directly on or proximally to the target. Particular disclosed embodiments of the method of using the signaling conjugate comprise multiplexing methods.Type: GrantFiled: April 23, 2020Date of Patent: February 20, 2024Assignee: VENTANA MEDICAL SYSTEMS, INC.Inventors: Nelson Alexander, William Day, Jerome W. Kosmeder, II, Mark Lefever, Larry Morrison, Anne M. Pedata, Stacey Stanislaw
-
Publication number: 20230241393Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: ApplicationFiled: April 6, 2023Publication date: August 3, 2023Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
-
Patent number: 11654284Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: GrantFiled: October 29, 2020Date of Patent: May 23, 2023Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, Jr., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
-
Patent number: 11642529Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: GrantFiled: November 6, 2020Date of Patent: May 9, 2023Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, Jr., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
-
Patent number: 11638826Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: GrantFiled: March 9, 2020Date of Patent: May 2, 2023Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, Jr., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
-
Publication number: 20220315987Abstract: Automated methods for extracting nucleic acid from one or more tissue samples disposed on slides are disclosed. The methods utilize an automated slide staining apparatus that dispenses a plurality of nucleic acid extraction reagents onto the tissue sample, thus creating an extracted nucleic acid sample. The extracted nucleic acid sample may be used directly in downstream applications such as nucleic acid amplification or sequencing procedures, or may be further purified.Type: ApplicationFiled: June 2, 2022Publication date: October 6, 2022Inventors: William Day, Megan C. Peccarelli
-
Patent number: 11390903Abstract: Automated methods for extracting nucleic acid from one or more tissue samples disposed on slides are disclosed. The methods utilize an automated slide staining apparatus that dispenses a plurality of nucleic acid extraction reagents onto the tissue sample, thus creating an extracted nucleic acid sample. The extracted nucleic acid sample may be used directly in downstream applications such as nucleic acid amplification or sequencing procedures, or may be further purified.Type: GrantFiled: June 14, 2019Date of Patent: July 19, 2022Assignee: VENTANA MEDICAL SYSTEMS, INC.Inventors: William Day, Megan C. Peccarelli
-
Publication number: 20220178934Abstract: Disclosed herein are embodiments of a signaling conjugate, embodiments of a method of using the signaling conjugates, and embodiments of a kit comprising the signaling conjugate. The disclosed signaling conjugate comprises a latent reactive moiety and a chromogenic moiety that may further comprise a linker suitable for coupling the latent reactive moiety to the chromogenic moiety. The signaling conjugate may be used to detect one or more targets in a biological sample and are capable of being covalently deposited directly on or proximally to the target. Particular disclosed embodiments of the method of using the signaling conjugate comprise multiplexing methods.Type: ApplicationFiled: February 23, 2022Publication date: June 9, 2022Inventors: Nelson Alexander, William Day, Jerome W. Kosmeder, II, Mark Lefever, Larry Morrison, Anne M. Pedata, Stacey Stanislaw
-
Publication number: 20210311060Abstract: This disclosure describes methods, kits, and systems for scoring the immune response to cancer through examination of tissue infiltrating lymphocytes (TILs). Methods of scoring the immune response in cancer using tissue infiltrating lymphocytes include detecting CD3, CD8, CD20, and FoxP3 within the sample and scoring the detection manually or scoring the digital images of the staining with the aid of image analysis and algorithms.Type: ApplicationFiled: June 17, 2021Publication date: October 7, 2021Inventors: Michael Barnes, Joerg Bredno, Srinivas Chukka, William Day, Jim Martin, Robert Ochs, Noemi Sebastiao, Ting Chen, Yao Nie, Alisa Tubbs
-
Publication number: 20210286889Abstract: Devices, systems, and methods for allowing parents to view and track smart phone activities of their children can include one or more child software modules. The module can be installed on each child's smart phone. The module can access and extract data from or about more than one of the smart phone's other software applications, including at least two of the following: a texting application, a social media application, an image application that facilitates transmission or reception of images, and a web browser application. The module can further send the extracted data to an analysis server. The module can also monitor location data. Moreover, the system can include an analysis server that can identify potentially harmful language, images, and websites. Further, the system can include a parent portal. The parent portal can receive results from the analysis server.Type: ApplicationFiled: January 22, 2021Publication date: September 16, 2021Inventors: Rowland William Day, II, Eric John Wise, Tienshiao Ma, Manuel Calaycay Palafox, Kelly Chu, Steven Sigler
-
Patent number: 11079382Abstract: This disclosure describes methods, kits, and systems for scoring the immune response to cancer through examination of tissue infiltrating lymphocytes (TILs). Methods of scoring the immune response in cancer using tissue infiltrating lymphocytes include detecting CD3, CD8, CD20, and FoxP3 within the sample and scoring the detection manually or scoring the digital images of the staining with the aid of image analysis and algorithms.Type: GrantFiled: August 24, 2016Date of Patent: August 3, 2021Assignee: Ventana Medical Systems, IncInventors: Noemi Sebastiao, William Day, Robert Ochs, Srinivas Chukka, Jim Martin, Michael Barnes, Joerg Bredno, Ting Chen, Alisa Tubbs, Yao Nie
-
Publication number: 20210198728Abstract: Disclosed herein are methods and compositions for detecting differential expression of certain miRNAs in cancer cells or their surrounding normal tissues in the tumor microenvironment. The disclosure describes an automated, highly sensitive and specific method for detection of any cellular RNA molecule, including microRNA, messenger RNA and non-coding RNA. The technology includes probe design as well as probe use in an automated fashion for detection of RNA molecules in formalin-fixed paraffin-embedded tissue (FFPET) samples.Type: ApplicationFiled: March 5, 2021Publication date: July 1, 2021Inventors: William Day, Michael Farrell, Zeyu Jiang, Anne Pedata
-
Patent number: 10981000Abstract: An electrode lead comprises an elongated lead body, at least one lead connector terminal affixed to the proximal end of the lead body, and an electrically insulative cuff body affixed to the distal end of the lead body. The cuff body is configured for being circumferentially disposed around a nerve. The cuff body comprises cutouts, slits, a wrinkled portion, a thin stretchable portion, and/or a serpentine strap, which increases that increase the expandability of the cuff body when disposed around the nerve. The electrode lead further comprises at least one electrode contact affixed to the cuff body, and at least one electrical conductor extending through the lead body between the at least one lead connector terminal and the electrode contact(s). If the cuff body comprises cutouts or slits, the electrode lead can further comprise a thin stretchable film affixed to the cuff body over cutouts or slits.Type: GrantFiled: April 30, 2018Date of Patent: April 20, 2021Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Boon Khai Ng, William Dai
-
Patent number: 10982269Abstract: Disclosed herein are methods and compositions for detecting differential expression of certain miRNAs in cancer cells or their surrounding normal tissues in the tumor microenvironment. The disclosure describes an automated, highly sensitive and specific method for detection of any cellular RNA molecule, including microRNA, messenger RNA and non-coding RNA. The technology includes probe design as well as probe use in an automated fashion for detection of RNA molecules in formalin-fixed paraffin-embedded tissue (FFPET) samples.Type: GrantFiled: August 23, 2016Date of Patent: April 20, 2021Assignee: Ventana Medical Systems, Inc.Inventors: Michael Farrell, William Day, Zeyu Jiang, Anne Pedata
-
Publication number: 20210052893Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: ApplicationFiled: November 6, 2020Publication date: February 25, 2021Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Cakleron, Gregory Frederick Moinar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
-
Publication number: 20210038889Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: ApplicationFiled: October 29, 2020Publication date: February 11, 2021Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
-
Publication number: 20200368526Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.Type: ApplicationFiled: August 13, 2020Publication date: November 26, 2020Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCHInventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan