Patents by Inventor William DePriest

William DePriest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11864896
    Abstract: Computer based systems and methods for estimating a user state are disclosed. In some embodiments, the methods comprise inputting a first input at an intermittent interval and a second input at a frequent interval into a user state estimation model to estimate the user state. In some embodiments, the first inputs are enhanced by injecting a noise input to create a plurality of enhanced first inputs whereby the plurality of enhance first inputs correspond to the plurality of second inputs at the frequent interval. In some embodiments, the first input comprises a self-reported input and the second inputs comprise a physiological input, a performance input or a situational input. In some embodiments, a machine learning algorithm creates the state estimation model. In some embodiments, the state estimation model estimates a future user state. In some embodiments, a computer based system for estimating a user state is provided.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 9, 2024
    Assignee: Aptima, Inc.
    Inventors: Kevin Durkee, Scott Pappada, Andres Ortiz, William DePriest, John Feeney, Alexandra Geyer, Seamus Sullivan, Sterling Wiggins
  • Publication number: 20220277254
    Abstract: A contextualized sensor system is provided comprising one or more sensors, one or more memory elements, a library of alert rules stored in the one or more memory elements, one or more processors, and the one or more memory elements including instructions that, when executed, cause the one or more processors to perform operations comprising: receiving from one of the one or more sensors one or more sensor data, comparing the first sensor data to a library of alert rules to determine whether an alert situation has occurred, and communicating an alert if the alert situation has occurred. In some embodiments, the operations further comprise contextualizing an environmental data, a location data, a physiological data, a behavior data and an orientation data.
    Type: Application
    Filed: December 27, 2019
    Publication date: September 1, 2022
    Applicant: Aptima, Inc.
    Inventors: John Feeney, Kevin Durkee, Zachary Kiehl, William Depriest, Matthew Ewer
  • Publication number: 20190313959
    Abstract: Computer based systems and methods for estimating a user state are disclosed. In some embodiments, the methods comprise inputting a first input at an intermittent interval and a second input at a frequent interval into a user state estimation model to estimate the user state. In some embodiments, the first inputs are enhanced by injecting a noise input to create a plurality of enhanced first inputs whereby the plurality of enhance first inputs correspond to the plurality of second inputs at the frequent interval. In some embodiments, the first input comprises a self-reported input and the second inputs comprise a physiological input, a performance input or a situational input. In some embodiments, a machine learning algorithm creates the state estimation model. In some embodiments, the state estimation model estimates a future user state. In some embodiments, a computer based system for estimating a user state is provided.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 17, 2019
    Applicant: Aptima, Inc.
    Inventors: Kevin Durkee, Scott Pappada, Andres Ortiz, William DePriest, John Feeney, Alexandra Geyer, Seamus Sullivan, Sterling Wiggins
  • Patent number: 10265008
    Abstract: Computer based systems and methods for estimating a user state are disclosed. In some embodiments, the methods comprise inputting a first input at an intermittent interval and a second input at a frequent interval into a user state estimation model to estimate the user state. In some embodiments, the first inputs are enhanced by injecting a noise input to create a plurality of enhanced first inputs whereby the plurality of enhance first inputs correspond to the plurality of second inputs at the frequent interval. In some embodiments, the first input comprises a self-reported input and the second inputs comprise a physiological input, a performance input or a situational input. In some embodiments, a machine learning algorithm creates the state estimation model. In some embodiments, the state estimation model estimates a future user state. In some embodiments, a computer based system for estimating a user state is provided.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 23, 2019
    Assignee: Aptima, Inc.
    Inventors: Kevin Durkee, Scott Pappada, Andres Ortiz, William DePriest, John Feeney, Alexandra Geyer, Seamus Sullivan, Sterling Wiggins
  • Publication number: 20160007899
    Abstract: Computer based systems and methods for estimating a user state are disclosed. In some embodiments, the methods comprise inputting a first input at an intermittent interval and a second input at a frequent interval into a user state estimation model to estimate the user state. In some embodiments, the first inputs are enhanced by injecting a noise input to create a plurality of enhanced first inputs whereby the plurality of enhance first inputs correspond to the plurality of second inputs at the frequent interval. In some embodiments, the first input comprises a self-reported input and the second inputs comprise a physiological input, a performance input or a situational input. In some embodiments, a machine learning algorithm creates the state estimation model. In some embodiments, the state estimation model estimates a future user state. In some embodiments, a computer based system for estimating a user state is provided.
    Type: Application
    Filed: March 13, 2014
    Publication date: January 14, 2016
    Applicant: Aptima, Inc.
    Inventors: Kevin Durkee, Scott Pappada, Andres Ortiz, William DePriest, John Feeney, Alexandra Geyer, Seamus Sullivan, Sterling Wiggins