Patents by Inventor William E. Brumsickle

William E. Brumsickle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9998116
    Abstract: An illustrative device includes a first silicon-controlled rectifier (SCR) and a second silicon-controlled rectifier (SCR) connected in anti-parallel and a first commutation module, which includes a first voltage source, a first diode, and a first self-commutating semiconductor switch. The device also includes a second commutation module including a second voltage source, a second diode, and a second self-commutating semiconductor switch. The first voltage source, the first diode, and the first self-commutating semiconductor switch of the first commutation module are connected in series. The second voltage source, the second diode, and the second self-commutating semiconductor switch of the second commutation module are connected in series. The first SCR, the second SCR, the first commutation module, and the second commutation module are connected in parallel. The commutation modules are configured to apply reverse bias voltages to the first and second SCRs to turn off the SCRs.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: June 12, 2018
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Robert S. Schneider, Donald G. Rosene, Christopher J. Liegel, Joshua D. Kagerbauer, William E. Brumsickle
  • Publication number: 20170040999
    Abstract: An illustrative device includes a first silicon-controlled rectifier (SCR) and a second silicon-controlled rectifier (SCR) connected in anti-parallel and a first commutation module, which includes a first voltage source, a first diode, and a first self-commutating semiconductor switch. The device also includes a second commutation module including a second voltage source, a second diode, and a second self-commutating semiconductor switch. The first voltage source, the first diode, and the first self-commutating semiconductor switch of the first commutation module are connected in series. The second voltage source, the second diode, and the second self-commutating semiconductor switch of the second commutation module are connected in series. The first SCR, the second SCR, the first commutation module, and the second commutation module are connected in parallel. The commutation modules are configured to apply reverse bias voltages to the first and second SCRs to turn off the SCRs.
    Type: Application
    Filed: August 3, 2015
    Publication date: February 9, 2017
    Inventors: Robert S. Schneider, Donald G. Rosene, Christopher J. Liegel, Joshua D. Kagerbauer, William E. Brumsickle
  • Patent number: 7920392
    Abstract: A voltage sag correction device includes an input terminal adapted to receive a first operating signal having a line-to-neutral voltage. The first operating signal is provided to a load through an output terminal. A regulator module includes a rectifying device adapted to rectify a line-to-line input signal, a storage unit adapted to store energy corresponding to the rectified line-to-line input signal, and an inverter switching device adapted to use the stored energy to generate a correction signal during at least a portion of a voltage sag. An injection transformer in electrical communication with the regulator module is adapted to reduce a voltage of the correction signal. A bypass switch is in a closed position during a normal operating condition such that the injection transformer is bypassed. The bypass switch is in an open position during at least a portion of the voltage sag such that the injection transformer is energized.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: April 5, 2011
    Assignee: Soft Switching Technologies Corporation
    Inventors: Robert S. Schneider, William E. Brumsickle
  • Publication number: 20080278976
    Abstract: A voltage sag correction device includes an input terminal adapted to receive a first operating signal having a line-to-neutral voltage. The first operating signal is provided to a load through an output terminal. A regulator module includes a rectifying device adapted to rectify a line-to-line input signal, a storage unit adapted to store energy corresponding to the rectified line-to-line input signal, and an inverter switching device adapted to use the stored energy to generate a correction signal during at least a portion of a voltage sag. An injection transformer in electrical communication with the regulator module is adapted to reduce a voltage of the correction signal. A bypass switch is in a closed position during a normal operating condition such that the injection transformer is bypassed. The bypass switch is in an open position during at least a portion of the voltage sag such that the injection transformer is energized.
    Type: Application
    Filed: August 7, 2007
    Publication date: November 13, 2008
    Inventors: Robert S. Schneider, William E. Brumsickle
  • Patent number: 7105952
    Abstract: Floating electrically isolated active impedance modules are formed to attach to power transmission lines without breaking the lines such that the power line forms a secondary of the main transformer of the module. Each module includes an electrical energy storage device and a switching circuit, such as a single phase inverter, connected to the storage device and to the main transformer primary winding. The inverter can be controlled to couple a selected voltage to the transmission line through the main transformer primary winding which can provide effective positive impedance, negative impedance, or a voltage at or near phase quadrature with the line current. Many active impedance modules may be distributed over a power system grid to allow control of the impedance of the power lines in the grid and to steer power through the grid, with each module electrically isolated from ground and from other phase lines of the transmission system.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 12, 2006
    Assignee: Soft Switching Technologies Corporation
    Inventors: Deepakraj M. Divan, Robert Schneider, William E. Brumsickle
  • Patent number: 6118676
    Abstract: A low cost, small size, light weight, and highly effective system and method for providing dynamic power line voltage sag correction is provided. A dynamic voltage sag corrector includes a static bypass switch and a regulator/storage module connected together in parallel between input terminals and output terminals. Under normal operating conditions, the static bypass switch is closed, and a normal line voltage level is provided directly from the input terminals to the output terminals via the static bypass switch. When a voltage sag condition is indicated, the static bypass switch is opened, and the regulator/storage module is controlled to provide a near normal output voltage signal to the output terminals. The regulator/storage module includes a power conversion circuit which is controlled to provide the desired output voltage signal by adding a voltage level on storage capacitors to the available input line voltage signal.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: September 12, 2000
    Assignee: Soft Switching Technologies Corp.
    Inventors: Deepakraj M. Divan, Glen Luckjiff, Robert Schneider, William E. Brumsickle, William R. Kranz