Patents by Inventor William E. Crone

William E. Crone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8239024
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: August 7, 2012
    Assignee: Physio-Control, Inc.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 8135462
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates optical characteristics of light transmitted into a patient to ascertain physiological signals, such as pulsatile changes in general blood volume proximate a light detector module. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 13, 2012
    Assignee: Physio-Control, Inc.
    Inventors: James M. Owen, Cynthia P. Jayne, William E. Crone
  • Publication number: 20120035485
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates optical characteristics of light transmitted into a patient to ascertain physiological signals, such as pulsatile changes in general blood volume proximate a light detector module. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicant: Physio-Control, Inc.
    Inventors: James M. Owen, Cynthia P. Jayne, William E. Crone
  • Publication number: 20120035678
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 13, 2011
    Publication date: February 9, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20120035676
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates optical characteristics of light transmitted into a patient to ascertain physiological signals, such as pulsatile changes in general blood volume proximate a light detector module. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicant: Physio-Control, Inc.
    Inventors: James M. Owen, Cynthia P. Jayne, William E. Crone
  • Publication number: 20120029368
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20120029584
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 13, 2011
    Publication date: February 2, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20120029583
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20120022339
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20110144708
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 7917209
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: March 29, 2011
    Assignee: Physio-Control, Inc.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20080208273
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates optical characteristics of light transmitted into a patient to ascertain physiological signals, such as pulsatile changes in general blood volume proximate a light detector module. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: April 17, 2008
    Publication date: August 28, 2008
    Inventors: James M. Owen, Cynthia P. Jayne, William E. Crone
  • Publication number: 20040116969
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates optical characteristics of light transmitted into a patient to ascertain physiological signals, such as pulsatile changes in general blood volume proximate a light detector module. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: September 2, 2003
    Publication date: June 17, 2004
    Inventors: James M. Owen, Cynthia P. Jayne, William E. Crone
  • Publication number: 20030060723
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 27, 2003
    Applicant: Medtronic Physio-Control Manufacturing Corp.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 5477858
    Abstract: An ultrasound imaging system is provided which produces gray scale images of the anatomy simultaneous with Doppler signal processing so as to provide a single real-time image that shows not only the vascular anatomy and surrounding tissue but also flow events in the vascular compartment. A phased linear array having near-continuous focus over the scanning field provides high resolution and very small Doppler sample volumes. The system tests incoming signals from throughout the scanning field for amplitude, phase and frequency so as to determine B-mode data, motion presence and direction, and echo source velocity.
    Type: Grant
    Filed: July 9, 1991
    Date of Patent: December 26, 1995
    Assignee: Siemens Medical Systems, Inc.
    Inventors: Paul R. Norris, John Folline, Richard H. Chesarek, Michael J. Veraya, James R. Chekerylla, Richard A. Revell, Thomas R. Clary, Richard K. Johnson, Lee D. Dunbar, David R. Axness, John C. Lazenby, Donald R. Gardner, William E. Crone, W. Gerrit Barrere, Charles C. Myrick, Bruce M. Pirie, Leonard D. Seader, Louis A. Heaton, David M. Polakowski, Brian J. Sargent
  • Patent number: 4859859
    Abstract: Gas analyzers of the non-dispersive infrared radiation type which are designed to measure the concentration of one gas in a mixture of gases containing that gas. A novel, electrically modulated, stable, thick film infrared radiation emitter is employed to emit a beam of collimated, focused energy; and two electrically biased detectors are preferably used so that a ratioed, error eliminating output signal can be supplied to the failsafe, signal processing circuitry of the analyzer. The latter, and a conventional analog-to-digital convertor, supply information to a microcomputer which: (1) turns the infrared radiation emitter on and off; (2) controls a heater which keeps the infrared radiation detectors at a constant, precise temperature; and (3) controls displays of a variety of information concerning the gas being measured and the status of the gas analyzer. The microcomputer also accepts ambient temperature, barometric pressure, and other compensation factors.
    Type: Grant
    Filed: March 11, 1987
    Date of Patent: August 22, 1989
    Assignee: Cascadia Technology Corporation
    Inventors: Daniel W. Knodle, William E. Crone