Patents by Inventor William E. Gates

William E. Gates has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5919725
    Abstract: The present invention relates to a catalyst composition, its methods of preparation and its use in aromatic alkylation processes. The composition comprises a heteropoly compound selected from the group consisting of heteropoly salts and heteropolyacid salts deposited in the interior of a porous support selected from the group consisting of silica, titania, and zirconia, wherein said salt of said heteropoly salt and said heteropolyacid salt is selected from the group consisting of ammonium, cesium, potassium, and rubidium salts and mixtures thereof, and wherein said heteropoly salt and said heteropolyacid salt are formed with a heteropolyacid selected from the group consisting of 12-tungstophosphoric, 12-tungstosilicic, 12-molybdophosphoric, and 12-molybdosilicic acid.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: July 6, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Stuart Leon Soled, Jose Agusto da Costa Paes, Antonio Gutierrez, Sabato Miseo, William E. Gates, Kenneth L. Riley
  • Patent number: 5866739
    Abstract: The present invention relates to a catalyst composition, its methods of preparation and its use in aromatic alkylation processes. The composition comprises a heteropoly compound selected from the group consisting of heteropoly salts and heteropolyacid salts deposited in the interior of a porous support selected from the group consisting of silica, titania, and zirconia, wherein said salt of said heteropoly salt and said heteropolyacid salt is selected from the group consisting of ammonium, cesium, potassium, and rubidium salts and mixtures thereof, and wherein said heteropoly salt and said heteropolyacid salt are formed with a heteropolyacid selected from the group consisting of 12-tungstophosphoric, 12-tungstosilicic, 12-molybdophosphoric, and 12-molybdosilicic acid.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: February 2, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart Leon Soled, Jose Augusto da Costa Paes, Antonio Gutierrez, Sabato Miseo, William E. Gates, Kenneth L. Riley
  • Patent number: 5648589
    Abstract: The invention is directed to a catalyst composition comprising a Group VIII metal, preferably a Group VIII noble metal, and a zirconia support impregnated with silica and tungsten oxide and its use in an isomerization process.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: July 15, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Stuart L. Soled, William E. Gates, Enrique Iglesia
  • Patent number: 5489733
    Abstract: The present invention is directed to novel catalyst compositions, their preparation, and their use in a selective paraffin isomerization process. The solid acid catalyst compositions comprise a zirconium hydroxide support, a Group VIII metal, and a heteropolyacid selected from the group consisting of the exchanged aluminum salt of 12-tungstophosphoric acid, the exchanged salt of 12-tungstosilicic acid, and mixtures thereof. The use of said catalysts in an isomerization process comprises contacting said catalysts with a feed comprising C.sub.n or C.sub.n + paraffins, wherein n=4.
    Type: Grant
    Filed: November 29, 1994
    Date of Patent: February 6, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, Gary B. McVicker, Sabato Miseo, William E. Gates
  • Patent number: 5457253
    Abstract: By this invention there is provided a catalyst composition comprising a Group IVB oxide, an amorphous silica-alumina support having dispersed thereon a rare earth oxide, which as herein used also includes yttrium oxide, and a metal(s) selected from the group consisting of Group VIII noble metal(s), mixtures of Group VIII noble metal(s) and tin, mixtures of Group VIII noble metal(s) and rhenium, and mixtures of Group VIII noble metal(s), tin and rhenium. The amorphous silica-alumina support contains at least about 50% silica by weight. The catalyst can function as a hydrocarbon conversion catalyst in reactions where platinum on halided (Cl,F)-alumina is typically used.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: October 10, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Stuart L. Soled, Gary B. McVicker, William E. Gates, Sabato Miseo
  • Patent number: 5422327
    Abstract: The invention is directed to a catalyst composition comprising a Group VIII metal, preferably a Group VIII noble metal, and a zirconia support impregnated with silica and tungsten oxide and its use in an isomerization process.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: June 6, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, William E. Gates, Enrique Iglesia
  • Patent number: 5420092
    Abstract: The present invention is directed to novel catalyst compositions, their preparation, and their use in a selective paraffin isomerization process. The solid acid catalyst compositions comprise a silica support, a Group VIII metal, and a heteropolyacid selected from the group consisting of 12-tungstophosphoric acid, 12-tungstosilicic acid, the exchanged aluminum salt of 12-tungstophosphoric acid, the exchanged aluminum salt of 12-tungstosilicic acid and mixtures thereof. The use of said catalysts in an isomerization process comprises contacting said catalysts with a feed comprising C.sub.n or C.sub.n + paraffins, wherein n=4.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: May 30, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, Gary B. McVicker, Sabato Miseo, William E. Gates
  • Patent number: 5391532
    Abstract: The present invention is directed to novel catalyst compositions, their preparation, and their use in a selective paraffin isomerization process. The solid acid catalyst compositions comprise a zirconium hydroxide support, a Group VIII metal, and a heteropolyacid selected from the group consisting of the exchanged aluminum salt of 12-tungstophosphoric acid, the exchanged salt of 12-tungstosilicic acid, and mixtures thereof. The use of said catalysts in an isomerization process comprises contacting said catalysts with a feed comprising C.sub.n or C.sub.n + paraffins, wherein n=4.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: February 21, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, Gary B. McVicker, Sabato Niseo, William E. Gates
  • Patent number: 5254518
    Abstract: By this invention there is provided a catalyst composition comprising a Group IVB oxide, an amorphous silica-alumina support having dispersed thereon a rare earth oxide, which as herein used also includes yttrium oxide, and a metal(s) selected from the group consisting of Group VIII noble metal(s), mixtures of Group VIII noble metal(s) and tin, mixtures of Group VIII noble metal(s) and rhenium, and mixtures of Group VIII noble metal(s), tin and rhenium. The amorphous silica-alumina support contains at least about 50% silica by weight. The catalyst can function as a hydrocarbon conversion catalyst in reactions where platinum on halided (Cl,F)-alumina is typically used.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: October 19, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: Stuart L. Soled, Gary B. McVicker, William E. Gates, Sabato Miseo
  • Patent number: 5248409
    Abstract: Rare earth oxides, such as Nd.sub.2 O.sub.3 disperse onto the surface of SiO.sub.2 /Al.sub.2 O.sub.3 and act as weakly basic titrants. This lowers the acidity of SiO.sub.2 /Al.sub.2 O.sub.3 to close to that of chlorided alumina, as shown by model compound reaction tests. This support also disperses a noble metal such as Pt much better than undoped SiO.sub.2 /Al.sub.2 O.sub.3 and similar to chlorided alumina. Platinum on the rare earth modified silica alumina can function as a hydrocarbon conversion catalyst in reactions where Pt/chlorided Al.sub.2 O.sub.3 is used, such as in reforming, and isomerization, especially wax isomerization.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: September 28, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: Stuart L. Soled, Gary B. McVicker, William E. Gates
  • Patent number: 5208200
    Abstract: Rare earth oxides, such as Nd.sub.2 O.sub.3 disperse onto the surface of SiO.sub.2 /Al.sub.2 O.sub.3 and act as weakly basic titrants. This lowers the acidity of SiO.sub.2 /Al.sub.2 O.sub.3 to close to that of chlorided alumina, as shown by model compound reaction tests. This support also disperses a noble metal such as Pt much better than undoped SiO.sub.2 /Al.sub.2 O.sub.3 and similar to chlorided alumina. Platinum on the rare earth modified silica alumina can function as a hydrocarbon conversion catalyst in reactions where Pt/chlorided Al.sub.2 O.sub.3 is used, such as in reforming, and isomerization, especially wax isomerization.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: May 4, 1993
    Assignee: Exxon Research and Engineering Co.
    Inventors: Stuart L. Soled, Gary B. McVicker, William E. Gates
  • Patent number: 5157199
    Abstract: A process for isomerizing a paraffin feed comprising contacting the feed with a strong, solid acid catalyst comprising a sulfated Group IVB metal oxide and at least one Group VIII metal in the presence of hydrogen and an adamantane compound.
    Type: Grant
    Filed: April 1, 1991
    Date of Patent: October 20, 1992
    Assignee: Exxon Research and Engineering Co.
    Inventors: Stuart L. Soled, Enrique Iglesia, George M. Kramer, William E. Gates, Richard H. Ernst
  • Patent number: 5137620
    Abstract: A reforming process using a Supported Group VIII noble metal reforming catalyst which has been pretreated with an unsaturated aliphatic hydrocarbon at elevated temperatures, thereby lowering activity during initial reforming operations and reducing gas production during the initial operation.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: August 11, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: John L. Robbins, Elise Marucchi-Soos, Ming Chow, William E. Gates, Shun C. Fung, Joseph P. Boyle
  • Patent number: 5051384
    Abstract: Supported Group VIII noble metal reforming catalysts are pretreated with an unsaturated aliphatic hydrocarbon at elevated temperatures, thereby lower activity during initial reforming operation and reducing gas production during the initial operation.
    Type: Grant
    Filed: March 22, 1990
    Date of Patent: September 24, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: John L. Robbins, Elise Marucchi-Soos, Ming Chow, William E. Gates, Shun C. Fung
  • Patent number: 4639431
    Abstract: New catalysts containing a Group VIII metal such as iron, a Group IIB metal, such as zinc, a Group IA alkali metal such as potassium, rubidium and/or cesium, and a lanthanide metal, such as cerium, exhibit improved productivity in synthesis of alpha-olefins from hydrogen rich synthesis gas.
    Type: Grant
    Filed: July 11, 1985
    Date of Patent: January 27, 1987
    Assignee: Exxon Research and Engineering Company
    Inventors: William E. Gates, Rocco A. Fiato
  • Patent number: 4489593
    Abstract: Methods for determining the amount of a gas adsorbed or desorbed from a solid sample wherein a gas is introduced or withdrawn from a sample containing chamber at a substantially constant mass flow rate while measuring the pressure change within said chamber as a function of time is disclosed. An apparatus for conducting said method which uses a mass flow controller is also disclosed.
    Type: Grant
    Filed: September 9, 1982
    Date of Patent: December 25, 1984
    Assignee: Omicron Technology Corporation
    Inventors: Wim J.M. Pieters, William E. Gates
  • Patent number: 4487213
    Abstract: An apparatus capable of selecting and controlling the mass flow rate of a gas to be substantially constant over extended periods of time at very low flow rates and very low gas partial pressures is disclosed.
    Type: Grant
    Filed: September 9, 1982
    Date of Patent: December 11, 1984
    Assignee: Omicron Technology Corporation
    Inventors: William E. Gates, Wim J. M. Pieters
  • Patent number: 4226812
    Abstract: An improved process is described for producing chlorotrifluoroethylene, a useful monomer for making high strength chlorofluoropolymers, comprising passing a mixture of 1,1,2-trichloro-1,2,2-trifluoroethane, ethylene, hydrogen chloride and elemental oxygen in the vapor phase, at a temperature from about 350.degree. to 525.degree. C., over a catalyst consisting essentially of a mixture of copper chloride and an alkali metal chloride, preferably a eutectic mixture, occluded in a molecular sieve, having an average pore size diameter in the range of about 5 to 11 angstroms.A new catalyst composition is also described, useful in oxyhydrochlorination processes conducted at temperatures above 350.degree. C., consisting essentially of a mixture of copper chloride and an alkali metal chloride, preferably a eutectic mixture, occluded in a molecular sieve, having an average pore size diameter in the range of about 5 to 11 angstroms.
    Type: Grant
    Filed: November 25, 1977
    Date of Patent: October 7, 1980
    Assignee: Allied Chemical Corporation
    Inventors: Wim J. M. Pieters, William E. Gates, Franz Wenger
  • Patent number: 4194990
    Abstract: Catalyst and process for the production of chlorofluorinated hydrocarbons are disclosed by reacting a hydrocarbon with HCl, HF and an oxygen-containing gas under oxychlorofluorination conditions in the presence of a catalytic composition comprising magnesium and copper ions each in combination with fluoride ions and an alkali metal ion, or mixtures thereof, in combination with chloride ions.
    Type: Grant
    Filed: January 16, 1978
    Date of Patent: March 25, 1980
    Assignee: Allied Chemical Corporation
    Inventors: Wim J. M. Pieters, William E. Gates, Emery J. Carlson, John E. Wilkalis
  • Patent number: 4123389
    Abstract: Catalyst of cuprous chloride, as a first layer, on a carrier of particles of pyrogenic anhydrous silica or titania, or alpha-alumina produced from pyrogenic gamma-alumina, having as a second layer an alkali metal chloride especially KCl, and preferably also a rare earth metal chloride; especially LaCl.sub.3 ; formed by impregnation using non-aqueous solvents, especially CuCl in acetonitrile followed by KCl/LaCl.sub.3 in formic acid. The catalyst is effective at desirable reaction rates at temperatures well below 400.degree. C., such as 200.degree.-300.degree. C. and even below 200.degree. C., under certain conditions, for oxyhydrochlorination of organic materials such as methane; and is also effective for production of chlorine by the Deacon process at relatively low temperatures. Problems due to catalyst volatility and melting are substantially mitigated.
    Type: Grant
    Filed: February 2, 1977
    Date of Patent: October 31, 1978
    Assignee: Allied Chemical Corporation
    Inventors: Wim J. M. Pieters, Emery J. Carlson, William E. Gates, William C. Conner, Jr.