Patents by Inventor William E. Gent

William E. Gent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240006601
    Abstract: Process for making a composite oxide according to the formula x·Li2Ni1-y1-y2Mny1M1y2O3·(1?x)·LiNi1-zM2zO2 wherein x is in the range of from 0.01 to 0.5, z is in the range of from zero to 0.5, M1 is selected from Ti, Zr, Sn, Ge, Ta, Nb, Sb, W, and Mo, and combinations of at least two of the foregoing, M2 is at least one of Co, Al, Mg, Fe, or Mn, or a combination of at least two of the foregoing, 0.1?y1?0.75, zero?y2?0.05, said process comprising the following steps: (a) providing a particulate hydroxide, oxide or oxyhydroxide of TM where TM has the general formula x·Ni1-y1-y2Mny1M1y·(1?x)Ni1-zM2z, or the respective species without M1 and/or M2, (b) adding a source of lithium, (c) treating the mixture obtained from step (b) thermally under an atmosphere comprising oxygen in two steps: (c) heating the mixture obtained from step (b) to 680 to 800° C. in an atmosphere containing in the range of from 10 to 100 vol-% oxygen, and, (e) heating the intermediate from step (c) to 450 to 580° C.
    Type: Application
    Filed: November 5, 2021
    Publication date: January 4, 2024
    Inventors: Tobias Maximilian Teufl, Jordan K Lampert, Heino Sommer, William C. Chueh, William E. Gent
  • Patent number: 11768249
    Abstract: System, methods, and other embodiments described herein relate to improving the estimation of battery life. In one embodiment, a method includes measuring electrochemical data of a battery cell associated with an electrochemical reaction triggered by a test during a diagnostic cycle. The method also includes determining a feature associated with the degradation of the battery cell from the electrochemical data. The method also includes predicting an end-of-life (EOL) of the battery cell by using the feature in a machine learning (ML) model.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 26, 2023
    Assignees: Toyota Research Institute, Inc., Massachusetts Institute of Technology, The Board of Trustees of the Leland Stanford Junior University
    Inventors: William C. Chueh, Bruis van Vlijmen, William E. Gent, Vivek Lam, Patrick K. Herring, Chirranjeevi Balaji Gopal, Patrick A. Asinger, Benben Jiang, Richard Dean Braatz, Xiao Cui, Gabriel B. Crane
  • Publication number: 20230143043
    Abstract: Process for making a mixed oxide according to the formula Li1+xTM1?xO2 wherein x is in the range of from 0.1 to 0.2 and TM is a combination of elements according to general formula (I) (NiaCobMnc)1-dM1d (I) wherein a is in the range of from 0.30 to 0.38, b being in the range of from zero to 0.05, c being in the range of from 0.60 to 0.70, and d being in the range of from zero to 0.05, M1 is selected from Al, Ti, Zr, W, Mo, Nb, Ta, Mg and combinations of at least two of the forego-ing, a+b+c=1, said process comprising the following steps: (a) providing a particulate hydroxide, oxide or oxyhydroxide of manganese, nickel, and, optionally, at least one of Co and M1, (b) adding a source of lithium, (c) calcining the mixture obtained from step (b) thermally under an atmosphere comprising 0.05 to 5 vol.-% of oxygen at a maximum temperature the range of from 650 to 1000° C.
    Type: Application
    Filed: April 1, 2021
    Publication date: May 11, 2023
    Inventors: Tobias Maximilian TEUFL, Jorden K. LAMPERT, Heino SOMMER, Kipil LIM, Peter M. CSERNICA, William E. GENT, William C. CHUEH, Grace BUSSE
  • Patent number: 11614491
    Abstract: System, methods, and other embodiments described herein relate to improving the cycling of batteries by using data and a hierarchical Bayesian model (HBM) for predicting the cycle life of a cycling protocol. In one embodiment, a method includes classifying cycle life of a battery into a class using battery data from cycling with a protocol, wherein the class represents cycle life distributions of cycling protocols. The method also includes quantifying, using the class in a HBM, variability for the battery induced by the protocol. The method also includes predicting, using the HBM, an adjusted cycle life for the protocol according to the variability. The method also includes communicating the adjusted cycle life to operate the battery.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: March 28, 2023
    Assignees: Toyota Research Institute, Inc., Massachusetts Institute of Technology, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Richard Dean Braatz, Benben Jiang, Fabian Mohr, Michael Forsuelo, William E. Gent, Patrick K. Herring, William C. Chueh, Stephen J. Harris
  • Publication number: 20220341995
    Abstract: System, methods, and other embodiments described herein relate to improving the cycling of batteries by using data and a hierarchical Bayesian model (HBM) for predicting the cycle life of a cycling protocol. In one embodiment, a method includes classifying cycle life of a battery into a class using battery data from cycling with a protocol, wherein the class represents cycle life distributions of cycling protocols. The method also includes quantifying, using the class in a HBM, variability for the battery induced by the protocol. The method also includes predicting, using the HBM, an adjusted cycle life for the protocol according to the variability. The method also includes communicating the adjusted cycle life to operate the battery.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 27, 2022
    Applicants: Toyota Research Institute, Inc., The Board of Trustees of the Leland Stanford Junior University, Massachusetts Institute of Technology
    Inventors: Richard Dean Braatz, Benben Jiang, Fabian Mohr, Michael Forsuelo, William E. Gent, Patrick K. Herring, William C. Chueh, Stephen J. Harris
  • Publication number: 20220137149
    Abstract: System, methods, and other embodiments described herein relate to improving the estimation of battery life. In one embodiment, a method includes measuring electrochemical data of a battery cell associated with an electrochemical reaction triggered by a test during a diagnostic cycle. The method also includes determining a feature associated with the degradation of the battery cell from the electrochemical data. The method also includes predicting an end-of-life (EOL) of the battery cell by using the feature in a machine learning (ML) model.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 5, 2022
    Applicants: Toyota Research Institute, Inc., The Board of Trustees of the Leland Stanford Junior University, Massachusetts Institute of Technology
    Inventors: William C. Chueh, Bruis van Vlijmen, William E. Gent, Vivek Lam, Patrick K. Herring, Chirranjeevi Balaji Gopal, Patrick A. Asinger, Benben Jiang, Richard Dean Braatz, Xiao Cui, Gabriel B. Crane