Patents by Inventor William E. Rogers

William E. Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112834
    Abstract: A method of installing a fire resistant coaxial cable is described in which the cable has a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests. Another layer of ceramifiable silicone rubber can surround the outer conductor and continue to insulate it from the outside if a low-smoke zero-halogen (LSZH) jacket outer layer burns away.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 11942233
    Abstract: A fire resistant corrugated coaxial cable is described that employs a high-temperature, insulating alkaline earth silicate (AES) wool dielectric. The AES wool dielectric is devoid of water as a constituent. The AES wool may be survivable under conditions of high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests. A layer of ceramifiable silicone rubber or refractory fiber wrap can surround the outer conductor and continues to insulate it from the outside if a low-smoke zero-halogen (LSZH) jacket burns away.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: March 26, 2024
    Assignee: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 11916287
    Abstract: The present apparatus, system and method solves the problems of the prior art by enabling substantial dissipation of an electrical energy surge coming from communications antenna which has been struck by lightning. The apparatus is for mounting to an exterior of a building at or near communications antenna also located at the exterior of the building. The apparatus is connected with incoming coaxial cables extending from exterior mounted antenna and with outgoing coaxial cables which extend from the apparatus to communications equipment housed within a communications center. The lighting strike surge travels from antenna, along the incoming coaxial cable and is redirected within the apparatus by polyphasers which trip at capacity to redirect the surge to three separate grounding bars and prevent the surge from continuing along outgoing coaxial cables leading to communications equipment thus safely dissipating surge and shielding communications equipment.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: February 27, 2024
    Assignee: Red Cloud Inc.
    Inventor: William E Rogers
  • Patent number: 11881329
    Abstract: A fire resistant coaxial cable and method of making is described that has a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The ceramifiable silicone rubber can have a polysiloxane matrix with inorganic flux and refractory particles that ceramify under high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: January 23, 2024
    Assignee: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Publication number: 20220029283
    Abstract: The present apparatus, system and method solves the problems of the prior art by enabling substantial dissipation of an electrical energy surge coming from communications antenna which has been struck by lightning. The apparatus is for mounting to an exterior of a building at or near communications antenna also located at the exterior of the building. The apparatus is connected with incoming coaxial cables extending from exterior mounted antenna and with outgoing coaxial cables which extend from the apparatus to communications equipment housed within a communications center. The lighting strike surge travels from antenna, along the incoming coaxial cable and is redirected within the apparatus by polyphasers which trip at capacity to redirect the surge to three separate grounding bars and prevent the surge from continuing along outgoing coaxial cables leading to communications equipment thus safely dissipating surge and shielding communications equipment.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 27, 2022
    Applicant: Red Cloud Inc.
    Inventor: William E. Rogers
  • Patent number: 11145965
    Abstract: The present apparatus, system and method solves the problems of the prior art by enabling substantial dissipation of an electrical energy surge coming from communications antenna which has been struck by lightning. The apparatus is for mounting to an exterior of a building at or near communications antenna also located at the exterior of the building. The apparatus is connected with incoming coaxial cables extending from exterior mounted antenna and with outgoing coaxial cables which extend from the apparatus to communications equipment housed within a communications center. The lighting strike surge travels from antenna, along the incoming coaxial cable and is redirected within the apparatus by polyphasers which trip at capacity to redirect the surge to three separate grounding bars and prevent the surge from continuing along outgoing coaxial cables leading to communications equipment thus safely dissipating surge and shielding communications equipment.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: October 12, 2021
    Assignee: Red Cloud Inc.
    Inventor: William E Rogers
  • Patent number: 11145440
    Abstract: Methods of testing and installing fire-resistant coaxial cables are described. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 12, 2021
    Assignee: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Publication number: 20210249158
    Abstract: A fire resistant corrugated coaxial cable is described that employs a high-temperature, insulating alkaline earth silicate (AES) wool dielectric. The AES wool dielectric is devoid of water as a constituent. The AES wool may be survivable under conditions of high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests. A layer of ceramifiable silicone rubber or refractory fiber wrap can surround the outer conductor and continues to insulate it from the outside if a low-smoke zero-halogen (LSZH) jacket burns away.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 12, 2021
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Publication number: 20210183539
    Abstract: A fire resistant coaxial cable and method of making is described that has a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The ceramifiable silicone rubber can have a polysiloxane matrix with inorganic flux and refractory particles that ceramify under high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests.
    Type: Application
    Filed: June 8, 2020
    Publication date: June 17, 2021
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 10726974
    Abstract: A fire resistant coaxial cable and method of making includes a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The ceramifiable silicone rubber can have a polysiloxane matrix with inorganic flux and refractory particles that ceramify under high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 28, 2020
    Assignee: AMERICAN FIRE WIRE, INC.
    Inventor: William E. Rogers
  • Publication number: 20190237221
    Abstract: Methods of testing and installing fire-resistant coaxial cables are described. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 10283239
    Abstract: Fire-resistant coaxial cables are described as well as methods to manufacture them. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 7, 2019
    Assignee: AMERICAN FIRE WIRE, INC.
    Inventor: William E. Rogers
  • Publication number: 20180261915
    Abstract: The present apparatus, system and method solves the problems of the prior art by enabling substantial dissipation of an electrical energy surge coming from communications antenna which has been struck by lightning. The apparatus is for mounting to an exterior of a building at or near communications antenna also located at the exterior of the building. The apparatus is connected with incoming coaxial cables extending from exterior mounted antenna and with outgoing coaxial cables which extend from the apparatus to communications equipment housed within a communications center. The lighting strike surge travels from antenna, along the incoming coaxial cable and is redirected within the apparatus by polyphasers which trip at capacity to redirect the surge to three separate grounding bars and prevent the surge from continuing along outgoing coaxial cables leading to communications equipment thus safely dissipating surge and shielding communications equipment.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 13, 2018
    Applicant: Red Cloud Inc.
    Inventor: William E Rogers
  • Publication number: 20180174710
    Abstract: Fire-resistant coaxial cables are described as well as methods to manufacture them. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Application
    Filed: September 21, 2017
    Publication date: June 21, 2018
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 9773585
    Abstract: A fire-resistant coaxial cable is described in which the dielectric between the central conductor and outer coaxial conductor can ceramify under high heat. The dielectric is composed of a ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. An outer wrap of ceramic fiber yarn surrounds the outer conductor and continues to insulate it from the outside if a low smoke zero halogen jacket burns away. Embodiments include those with durable corrugated outer conductors or flexible braided outer conductors. Methods of testing and installation are described.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: September 26, 2017
    Assignee: AMERICAN FIRE WIRE, INC.
    Inventor: William E. Rogers
  • Patent number: 8322332
    Abstract: A solar radiation collector system may includes a gimbal with a rim that supports a solar radiation concentrator or collector assembly passing through the plane of the rim, and foundation structures that support and anchor the gimbal, allowing it to both rotate and be raised or lowered. One flexible structural member may support the gimbal rim and a second flexible structural device both anchors the rim and enables the gimbal-collector assembly to rotate around an axis parallel to the earth's polar axis providing the desired primary tracking motion following the daily apparent motion of the sun. Motion between the gimbal and the solar radiation collector assembly allows the assembly to follow the apparent seasonal motion of the sun, among other tasks.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: December 4, 2012
    Inventor: William E. Rogers
  • Publication number: 20110056484
    Abstract: A solar radiation collector system may includes a gimbal with a rim that supports a solar radiation concentrator or collector assembly passing through the plane of the rim, and foundation structures that support and anchor the gimbal, allowing it to both rotate and be raised or lowered. One flexible structural member may support the gimbal rim and a second flexible structural device both anchors the rim and enables the gimbal-collector assembly to rotate around an axis parallel to the earth's polar axis providing the desired primary tracking motion following the daily apparent motion of the sun. Motion between the gimbal and the solar radiation collector assembly allows the assembly to follow the apparent seasonal motion of the sun, among other tasks.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 10, 2011
    Inventor: William E. Rogers
  • Patent number: 6898990
    Abstract: A sampling cartridge for a gas sampling apparatus includes a shell having a cylindrical wall and a sampling window extending through the wall. A pair of spools are coaxially and internally positioned within the shell. The spools are independently rotatable relative to the shell. A first spool may include multiple interval sample collectors while the second spool includes a duration sample collector. Each spool also has a window closing surface which is positioned adjacent the window whenever an access door of the gas sampling apparatus is opened. The sampling cartridge may also include a fully encapsulated section of sample collector material as a negative control, and an integral RF tag for storing chain of custody information including personal identification information of a cartridge replenisher.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: May 31, 2005
    Assignee: Rupprecht & Patashnick Company, Inc.
    Inventors: William E. Rogers, Adam C. Bailey, Michael S. Cummings, Lauren R. Basch
  • Patent number: 6867413
    Abstract: A high-flow rate, low-noise, gas sampling apparatus for collecting particulate such as biological, chemical, and radioactive material from a gas on a collector such as an impaction collector includes a housing having an inlet and an outlet and a fan disposed within the housing for drawing the gas into the inlet, past the collector for sampling, and exhausting the gas through the outlet. The fan is operable to produce a flow of gas through the housing of greater than about 50 liters per minute with a noise level emitted from the apparatus being less than about 60 decibels. The apparatus may be configured as a compact, unobtrusive, portable, lightweight apparatus for use in various indoor or outdoor locations. The apparatus may also include a sensor for the detection of radioactive material collected on the collector, a processor for monitoring the sampling, and the apparatus may be linked to a communications network such as the Internet. Methods for collecting particulate from a gas are also enclosed.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: March 15, 2005
    Inventors: Lauren R. Basch, William E. Rogers, Harvey Patashnick
  • Publication number: 20040263863
    Abstract: Methods and systems for forming face masks are disclosed. Embodiments may utilize computer-aided design and computer-aided manufacturing to form custom fitted face masks. System software may be configured to acquire facial topography information, design a mask based on the topography information, and send mask information to a computerized manufacturing device. The software may communicate with a scanning device for facial topography acquisition and a milling machine for pattern fabrication. In an embodiment, the scanning device may include a linear scan non-contact laser imager. In an embodiment, the scanning device may be manually moved with respect to an individual being scanned, thereby eliminating the need for motive apparatus. In such embodiments, position information may be determined based on data from a position sensor coupled to the scanning device.
    Type: Application
    Filed: January 27, 2004
    Publication date: December 30, 2004
    Inventors: William E. Rogers, Gordon Bosker