Patents by Inventor William Easterbrook

William Easterbrook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11499546
    Abstract: A reciprocating piston pump may include a fluid handling portion comprising a fluid inlet, a fluid outlet, and a pump chamber; a drive assembly portion comprising a piston drive assembly, a reciprocating piston, a drive assembly housing, and a drive assembly chamber; and an electro-fluidic leak detection element comprising a fluid sensing portion. The reciprocating piston of the drive assembly portion extends into the pump chamber of the fluid handling portion. The piston drive assembly operates to reciprocate the reciprocating piston within the pump chamber. The electro-fluidic leak detection element is mounted within the drive assembly portion. The electro-fluidic leak detection element is configured to generate a fluid leakage signal when fluid from the pump chamber enters the drive assembly chamber and contacts the fluid sensing portion of the electro-fluidic leak detection element. A plurality of reciprocating piston pumps may be incorporated into fluid handling systems.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 15, 2022
    Assignee: BIO-CHEM FLUIDICS, INC.
    Inventors: Henry X Huang, Ethan Matthew Gardner, Razvan Bulugioiu, Michael Swern, William A Easterbrook, Sharad Harihar Joshi
  • Patent number: 11273446
    Abstract: A threaded fluidic fitting may include a fluid passage, at least one fluid port, a threaded fitting portion, an engageable body portion, and an electro-fluidic leak detection element. The fluid passage extends from the fluid port of the threaded fluidic fitting. The threaded fitting portion comprises a helical thread, extends from a leak detection face of the engageable body portion, and is configured to rotate with the engageable body portion to enhance a fluidically sealed engagement of one of the fluid ports with a complementary fluidic component. The electro-fluidic leak detection element is positioned on the leak detection face of the engageable body portion or on a drip edge portion of a face extending from the leak detection face. A fluid handling system may include a plurality of threaded fluidic fittings and a leak detecting computing hub in communication with the plurality of threaded fluidic fittings.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 15, 2022
    Assignee: BIO-CHEM FLUIDICS, INC.
    Inventors: Henry X Huang, Ethan Matthew Gardner, Razvan Bulugioiu, Michael Swern, William A Easterbrook, Sharad Harihar Joshi, Sr.
  • Patent number: 11105439
    Abstract: A pinch valve configuration may include a pinch valve comprising a valve body, a valve plunger, and a fluidic tubing pinch passage defined between a tubing seat of the valve body and an operative end of the valve plunger. The pinch valve configuration may further include a Hall effect sensor assembly comprising a stationary element anchored to the valve body and a motive element anchored to the valve plunger. The pinch valve configuration additionally includes a failure prediction module in communication with the Hall effect sensor assembly. The failure prediction module is programmed to process an output signal of the Hall effect sensor assembly as a displacement reading, to compare the displacement reading with a failure prediction threshold, and to generate a failure prediction signal from the comparison of the displacement reading with the failure prediction threshold.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 31, 2021
    Assignee: BIO-CHEM FLUIDICS, INC.
    Inventors: Henry X Huang, Ethan Matthew Gardner, Razvan Bulugioiu, Michael Swern, William A Easterbrook, Sharad Harihar Joshi, Sr.
  • Publication number: 20210113189
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Patent number: 10905398
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: February 2, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Patent number: 10809233
    Abstract: A backing component configured to receive and attenuate transmitted acoustic signals from a transducer element in an ultrasound probe is disclosed. The backing component has a unitary structure of a first material and a second material, and a variation in packing density of the first material across at least a portion of a thickness of the backing component. Further, a method of making a backing component for a transducer element in an ultrasound probe is disclosed. The method includes performing an additive manufacturing technique using a first material and a second material to form the backing component that has a unitary structure of the first material and the second material. Performing the additive manufacturing technique involves varying a packing density of the first material across at least a portion of thickness of the backing component.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 20, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jessica Lynn Abraham, Jimmie Autrey Beacham, Scott William Easterbrook
  • Publication number: 20200038865
    Abstract: A threaded fluidic fitting may include a fluid passage, at least one fluid port, a threaded fitting portion, an engageable body portion, and an electro-fluidic leak detection element. The fluid passage extends from the fluid port of the threaded fluidic fitting. The threaded fitting portion comprises a helical thread, extends from a leak detection face of the engageable body portion, and is configured to rotate with the engageable body portion to enhance a fluidically sealed engagement of one of the fluid ports with a complementary fluidic component. The electro-fluidic leak detection element is positioned on the leak detection face of the engageable body portion or on a drip edge portion of a face extending from the leak detection face. A fluid handling system may include a plurality of threaded fluidic fittings and a leak detecting computing hub in communication with the plurality of threaded fluidic fittings.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Applicant: Bio-Chem Fluidics, Inc.
    Inventors: Henry X Huang, Ethan Matthew Gardner, Razvan Bulugioiu, Michael Swern, William A Easterbrook, Sharad Harihar Joshi, Sr.
  • Publication number: 20200041035
    Abstract: A pinch valve configuration may include a pinch valve comprising a valve body, a valve plunger, and a fluidic tubing pinch passage defined between a tubing seat of the valve body and an operative end of the valve plunger. The pinch valve configuration may further include a Hall effect sensor assembly comprising a stationary element anchored to the valve body and a motive element anchored to the valve plunger. The pinch valve configuration additionally includes a failure prediction module in communication with the Hall effect sensor assembly. The failure prediction module is programmed to process an output signal of the Hall effect sensor assembly as a displacement reading, to compare the displacement reading with a failure prediction threshold, and to generate a failure prediction signal from the comparison of the displacement reading with the failure prediction threshold.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Applicant: Bio-Chem Fluidics, Inc.
    Inventors: Henry X Huang, Ethan Matthew Gardner, Razvan Bulugioiu, Michael Swern, William A. Easterbrook, Sharad Harihar Joshi, SR.
  • Publication number: 20200040890
    Abstract: A reciprocating piston pump may include a fluid handling portion comprising a fluid inlet, a fluid outlet, and a pump chamber; a drive assembly portion comprising a piston drive assembly, a reciprocating piston, a drive assembly housing, and a drive assembly chamber; and an electro-fluidic leak detection element comprising a fluid sensing portion. The reciprocating piston of the drive assembly portion extends into the pump chamber of the fluid handling portion. The piston drive assembly operates to reciprocate the reciprocating piston within the pump chamber. The electro-fluidic leak detection element is mounted within the drive assembly portion. The electro-fluidic leak detection element is configured to generate a fluid leakage signal when fluid from the pump chamber enters the drive assembly chamber and contacts the fluid sensing portion of the electro-fluidic leak detection element. A plurality of reciprocating piston pumps may be incorporated into fluid handling systems.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Applicant: Bio-Chem Fluidics, Inc.
    Inventors: Henry X. Huang, Ethan Matthew Gardner, Razvan Bulugioiu, Michael Swern, William A. Easterbrook, Sharad Harihar Joshi, SR.
  • Publication number: 20190178849
    Abstract: A backing component configured to receive and attenuate transmitted acoustic signals from a transducer element in an ultrasound probe is disclosed. The backing component has a unitary structure of a first material and a second material, and a variation in packing density of the first material across at least a portion of a thickness of the backing component. Further, a method of making a backing component for a transducer element in an ultrasound probe is disclosed. The method includes performing an additive manufacturing technique using a first material and a second material to form the backing component that has a unitary structure of the first material and the second material. Performing the additive manufacturing technique involves varying a packing density of the first material across at least a portion of thickness of the backing component.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Jessica Lynn Abraham, Jimmie Autrey Beacham, Scott William Easterbrook
  • Publication number: 20180098750
    Abstract: Methods and systems are provided for ultrasound transducers with variable pitch. In one embodiment, an ultrasound probe comprises a plurality of transducer elements arranged in an array, wherein a pitch between adjacent transducer elements increases from a first pitch in a center of the array to a second pitch at an edge of the array, and wherein the pitch gradually varies between the first pitch and second pitch for transducer elements positioned between the center and the edge. In this way, an ultrasound probe can be operated in multiple modes while avoiding image artifacts caused by an abrupt change in pitch.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 12, 2018
    Inventors: Bruno Hans Haider, David Martin Mills, Scott William Easterbrook, Todor Sheljaskow
  • Publication number: 20180073502
    Abstract: A reciprocating piston pump may include a pump chamber, a piston seal, a monolithic partially fluorinated polymer piston with a fluid engaging end, a seating end, and a longitudinal outer piston surface extending between the fluid engaging end and the seating end. The reciprocating piston pump may further include a drive assembly coupled to the seating end of the monolithic partially fluorinated polymer piston. The drive assembly operates to reciprocate the monolithic partially fluorinated polymer piston within the pump chamber between full aspirate and full dispense positions. The piston seal forms an interface between the longitudinal outer piston surface of the piston and the pump chamber. The monolithic partially fluorinated polymer piston and the drive assembly are configured such that the piston seal interfaces with the longitudinal outer piston surface over a full stroke length of the drive assembly between the full aspirate and full dispense positions.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 15, 2018
    Applicant: Bio-Chem Fluidics, Inc.
    Inventors: Henry Huang, Razvan Bulugioiu, William Easterbrook
  • Publication number: 20170188995
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Publication number: 20170135673
    Abstract: A transducer probe is presented. The transducer probe includes a housing having at least one curved surface at a first end. Further, the transducer probe includes a transducer unit including a plurality of electro-acoustic modules and configured to emit ultrasound signals towards a target volume. Also, the transducer probe includes at least one interconnect configured to electrically couple the transducer unit to a probe cable. Furthermore, the transducer probe includes an acoustic standoff positioned between the transducer unit and the curved surface of the housing and configured to propagate the ultrasound signals with minimal attenuation, minimal refraction, or both.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 18, 2017
    Inventors: Reinhold Bruestle, Stefan Denk, Scott William Easterbrook, Scott Daniel Cogan, Charles Edward Baumgartner
  • Patent number: 9486581
    Abstract: An injectable substance delivery device comprising a pen device body, a cartridge, a plunger, a drive mechanism, and at least one of a lock-out mechanism and a rate-limiting mechanism. The lock-out mechanism is provided through a ratchet engagement between the body and the plunger to restrict plunger movement and to ensure that the required needle puncture depth is realized prior to injection by locking out the injection mechanism from advancing until a specified force is applied to the skin. A rate-limiting mechanism is also provided through a user compressed plunger drive spring to ensure that a specific rate of injection is realized during the injection of a medicament.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: November 8, 2016
    Assignee: Becton, Dickinson and Company
    Inventors: John Lovell, Robert E. West, Todd M. Chelak, William Easterbrook, Mark A. Follman, Edward P. Browka
  • Patent number: 8267890
    Abstract: A medication delivery device, particularly an intradermal delivery device, having a needle cannula, with a sharpened distal end having a forward tip, and a limiter disposed about the needle cannula. The limiter has a distal end defining a skin engaging surface which is disposed transversely to, and at least partially about, the needle cannula. The skin engaging surface is generally non-flat with generally coplanar portions, and a recess being defined in the skin engaging surface which defines a void in or adjacent to the coplanar portions into which portions of a patient's skin can be deformed into when the skin engaging surface is pressed against the patient's skin. The forward tip of the needle cannula is spaced apart from a plane defined by the coplanar portions a distance ranging from about 0.5 mm to 3.0 mm such that the skin engaging surface limits penetration of the forward tip of the needle cannula to the dermis layer of the patient's skin.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 18, 2012
    Assignee: Becton, Dickinson and Company
    Inventors: Paul G. Alchas, Peter W. Heyman, Marina S. Korisch, William A. Easterbrook, Robert E. West, Todd M. Chelak
  • Patent number: 8114149
    Abstract: The present invention is a hybrid stent design using half-slot circumferential sets of strut members with short (<1.5 mm) slot length that has minimal fish scaling and excellent stent retention and flexibility. These half-slot circumferential sets of strut members are connected one to the other with helical connectors similar to those of the Palmaz stent. One important difference in the design of the stent of the present invention is that the helical connectors are attached to every other crown (rather than connected to every crown) to further improve stent flexibility. By appropriately varying the strut width of both the connected and unconnected curved crowns to be greater at the center than at their ends, an increased radial strength can be provided for a given maximum strain that is imparted to the stent when it is expanded to its maximum diameter.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 14, 2012
    Assignee: Svelte Medical Systems, Inc.
    Inventors: David R. Fischell, Robert E. Fischell, Rajesh Kalavalapally, William A. Easterbrook, III
  • Publication number: 20110093059
    Abstract: The present invention is a hybrid stent design using half-slot circumferential sets of strut members with short (<1.5 mm) slot length that has minimal fish scaling and excellent stent retention and flexibility. These half-slot circumferential sets of strut members are connected one to the other with helical connectors similar to those of the Palmaz stent. One important difference in the design of the stent of the present invention is that the helical connectors are attached to every other crown (rather than connected to every crown) to further improve stent flexibility. By appropriately varying the strut width of both the connected and unconnected curved crowns to be greater at the center than at their ends, an increased radial strength can be provided for a given maximum strain that is imparted to the stent when it is expanded to its maximum diameter.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 21, 2011
    Applicant: SVELTE MEDICAL SYSTEMS, INC.
    Inventors: DAVID R. FISCHELL, ROBERT E. FISCHELL, RAJESH KALAVALAPALLY, WILLIAM A. EASTERBROOK, III
  • Publication number: 20090312722
    Abstract: A system and method for collection of fluids, as may be used in evaluation of drag dose delivery completeness after parenteral injection by measuring fluid volume leakage from the injection site is provided. The system and method optionally separate the collection and measurement steps, which make the system and method easy to use in multi-site clinical trials, and for batch weighing operations.
    Type: Application
    Filed: August 3, 2006
    Publication date: December 17, 2009
    Inventors: Philippe E. Laurent, Ronald J. Pettis, William A. Easterbrook, III, Julie Berube
  • Publication number: 20080045900
    Abstract: A medication delivery device, particularly an intradermal delivery device, having a needle cannula, with a sharpened distal end having a forward tip, and a limiter disposed about the needle cannula. The limiter has a distal end defining a skin engaging surface which is disposed transversely to, and at least partially about, the needle cannula. The skin engaging surface is generally non-flat with generally coplanar portions, and a recess being defined in the skin engaging surface which defines a void in or adjacent to the coplanar portions into which portions of a patient's skin can be deformed into when the skin engaging surface is pressed against the patient's skin. The forward tip of the needle cannula is spaced apart from a plane defined by the coplanar portions a distance ranging from about 0.5 mm to 3.0 mm such that the skin engaging surface limits penetration of the forward tip of the needle cannula to the dermis layer of the patient's skin.
    Type: Application
    Filed: January 30, 2004
    Publication date: February 21, 2008
    Inventors: Paul G. Alchas, Peter W. Heyman, Marina S. Korisch, William A. Easterbrook, Robert E. West, Todd M. Chelak