Patents by Inventor William Eric Caldwell

William Eric Caldwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10409019
    Abstract: An optical cable assembly is provided. The cable assembly includes a plurality of subunits surrounded by an outer cable jacket, a furcation unit and optical connectors coupled to the end of each of the subunits. Each of the subunits includes an inner jacket, a plurality of optical fibers; and a tensile strength element. The first tensile strength element and the inner jackets of each subunits are coupled to the furcation unit, and the optical fibers and tensile strength elements of each subunit extend through the furcation unit without being coupled to the furcation unit. The subunit tensile strength element and optical fibers of each subunit are balanced such that both experience axial loading applied to the assembly and, under various loading conditions, the compression of the subunits is controlled and/or the axial loading of the optical fibers is limited to allow proper function of the optical connector.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: William Eric Caldwell, Terry Lee Ellis, William Carl Hurley, William Welch McCollough, Mark Tracy Paap
  • Publication number: 20180129010
    Abstract: An optical cable assembly is provided. The cable assembly includes a plurality of subunits surrounded by an outer cable jacket, a furcation unit and optical connectors coupled to the end of each of the subunits. Each of the subunits includes an inner jacket, a plurality of optical fibers; and a tensile strength element. The first tensile strength element and the inner jackets of each subunits are coupled to the furcation unit, and the optical fibers and tensile strength elements of each subunit extend through the furcation unit without being coupled to the furcation unit. The subunit tensile strength element and optical fibers of each subunit are balanced such that both experience axial loading applied to the assembly and, under various loading conditions, the compression of the subunits is controlled and/or the axial loading of the optical fibers is limited to allow proper function of the optical connector.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 10, 2018
    Inventors: William Eric Caldwell, Terry Lee Ellis, William Carl Hurley, William Welch McCollough, Mark Tracy Paap
  • Patent number: 9690068
    Abstract: An optical cable assembly is provided. The cable assembly includes a plurality of subunits surrounded by an outer cable jacket, a furcation unit and optical connectors coupled to the end of each of the subunits. Each of the subunits includes an inner jacket, a plurality of optical fibers; and a tensile strength element. The first tensile strength element and the inner jackets of each subunits are coupled to the furcation unit, and the optical fibers and tensile strength elements of each subunit extend through the furcation unit without being coupled to the furcation unit. The subunit tensile strength element and optical fibers of each subunit are balanced such that both experience axial loading applied to the assembly and, under various loading conditions, the compression of the subunits is controlled and/or the axial loading of the optical fibers is limited to allow proper function of the optical connector.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 27, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: William Carl Hurley, William Welch McCollough, Mark Tracy Paap, Terry Lee Ellis, William Eric Caldwell, Rebecca Elizabeth Sistare
  • Publication number: 20170003468
    Abstract: An optical cable assembly is provided. The cable assembly includes a plurality of subunits surrounded by an outer cable jacket, a furcation unit and optical connectors coupled to the end of each of the subunits. Each of the subunits includes an inner jacket, a plurality of optical fibers; and a tensile strength element. The first tensile strength element and the inner jackets of each subunits are coupled to the furcation unit, and the optical fibers and tensile strength elements of each subunit extend through the furcation unit without being coupled to the furcation unit. The subunit tensile strength element and optical fibers of each subunit are balanced such that both experience axial loading applied to the assembly and, under various loading conditions, the compression of the subunits is controlled and/or the axial loading of the optical fibers is limited to allow proper function of the optical connector.
    Type: Application
    Filed: June 23, 2016
    Publication date: January 5, 2017
    Inventors: William Carl Hurley, William Welch McCollough, Mark Tracy Paap, Terry Lee Ellis, William Eric Caldwell, Rebecca Elizabeth Sistare
  • Patent number: 8175433
    Abstract: A fiber optic cable including at least one optical fiber disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The cavity has a first cavity cross-sectional area and a second cavity cross-sectional area located at different longitudinal locations along the cable, where the first cavity cross-sectional area is greater than the second cavity cross-sectional area. The region of the second cavity cross-sectional area of the cable provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the fiber optic cable is a dry cable having one or more dry insert within the cavity for cushioning and/or optionally providing water-blocking for the cable.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 8, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: William Eric Caldwell, Kenneth D. Temple, Jr., Richard S. Wagman
  • Publication number: 20090274425
    Abstract: A fiber optic cable including at least one optical fiber disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The cavity has a first cavity cross-sectional area and a second cavity cross-sectional area located at different longitudinal locations along the cable, where the first cavity cross-sectional area is greater than the second cavity cross-sectional area. The region of the second cavity cross-sectional area of the cable provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the fiber optic cable is a dry cable having one or more dry insert within the cavity for cushioning and/or optionally providing water-blocking for the cable.
    Type: Application
    Filed: July 7, 2009
    Publication date: November 5, 2009
    Applicant: Corning Cable Systems LLC,
    Inventors: William Eric Caldwell, Kenneth D. Temple, JR., Richard S. Wagman
  • Patent number: 7529451
    Abstract: A fiber optic cable including at least one optical fiber and at least one dry insert disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The dry insert has a first thickness and a second thickness located at different longitudinal locations along the dry insert, where the first thickness is greater than the second thickness. The region of the cable having the first thickness of the dry insert provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the optical fiber(s) have a predetermined level of coupling to the cable jacket that is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 5, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: William Eric Caldwell, Richard S. Wagman, Kenneth D. Temple, Jr.
  • Publication number: 20090034919
    Abstract: A fiber optic cable including at least one optical fiber and at least one dry insert disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The dry insert has a first thickness and a second thickness located at different longitudinal locations along the dry insert, where the first thickness is greater than the second thickness. The region of the cable having the first thickness of the dry insert provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the optical fiber(s) have a predetermined level of coupling to the cable jacket that is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: William Eric Caldwell, Richard S. Wagman, Kenneth D. Temple, JR.
  • Publication number: 20090034918
    Abstract: A fiber optic cable including at least one optical fiber disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The cavity has a first cavity cross-sectional area and a second cavity cross-sectional area located at different longitudinal locations along the cable, where the first cavity cross-sectional area is greater than the second cavity cross-sectional area. The region of the second cavity cross-sectional area of the cable provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the fiber optic cable is a dry cable having one or more dry insert within the cavity for cushioning and/or optionally providing water-blocking for the cable.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: William Eric Caldwell, Richard S. Wagman, Kenneth D. Temple, JR.