Patents by Inventor William F. Eaton

William F. Eaton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090256365
    Abstract: An injection molding method and system for an electrical circuit utilized in vehicle door latch mechanisms is disclosed herein. A mold is generally provided in which a mold cavity is formed therein from walls of the mold. An electrical circuit associated with vehicle door latch and/or integrated with the vehicle door latch can be located within the mold cavity. A plastics material can then be injection molded into the mold cavity of the mold, wherein the plastics material covers and seals the electrical circuit to provide insulation and environmental protection to the electrical circuit.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 15, 2009
    Inventors: Nigel V. Spurr, Michael J. Shelley, Richard T. Hayes, William F. Eaton, Hugh D. Gibson, Alex Crawford, Ajaykumar Vaidhyanathan, Scott A. Vorwald, Kenneth V. Bechtold, Curtis B. Johnson, Duncan S. Murchie, Daniel D. Kilker, Abanni B. Maxwell, Patrick H. Shannon, Gillian J. Madden, Adrian T. Kettle
  • Patent number: 7592204
    Abstract: A small sensor assembly is produced by encapsulating an inner package within an outer package. The inner assembly can have electrical components and sensors attached to a lead frame. The electrical components can be protected within inner packages that have alignment indentations. The alignment indentations are positioned over the outside edges of the lead frame and, preferably, no electrical components directly underlie the alignment indentations. The inner assembly is held in alignment by movable pins within a mold into which plastic is flowed. The mold is configured to cause some of the plastic to set earlier than the rest of the plastic and to hold the inner assembly in alignment within the mold. The movable pins can be retracted once enough plastic has set to hold the inner assembly. Unset plastic can then flow into the alignment indentations. A sealed sensor assembly is formed once all the plastic has set.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: September 22, 2009
    Assignee: Honeywell International Inc.
    Inventors: Aaron J. Meyers, William F. Eaton, Abannl B. Maxwell, Scott E. Michelhaugh
  • Publication number: 20090142857
    Abstract: A small sensor assembly is produced by encapsulating an inner package within an outer package. The inner assembly can have electrical components and sensors attached to a lead frame. The electrical components can be protected within inner packages that have alignment indentations. The alignment indentations are positioned over the outside edges of the lead frame and, preferably, no electrical components directly underlie the alignment indentations. The inner assembly is held in alignment by movable pins within a mold into which plastic is flowed. The mold is configured to cause some of the plastic to set earlier than the rest of the plastic and to hold the inner assembly in alignment within the mold. The movable pins can be retracted once enough plastic has set to hold the inner assembly. Unset plastic can then flow into the alignment indentations. A sealed sensor assembly is formed once all the plastic has set.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Inventors: Aaron J. Meyers, William F. Eaton, Abannl B. Maxwell, Scott E. Michelhaugh
  • Patent number: 7387040
    Abstract: A sensor is associated with a mounting surface. An O-ring is then positioned between the sensor and the mounting surface, such that the O-ring is compressible when the sensor is fixed to the mounting surface. A fixing mechanism is generally provided for permanently fixing the sensor to the mounting surface, such that the O-ring located between the sensor and the mounting surface provides a proper tension thereof which prevents the sensor from being adversely affected by vibration resulting from a harsh vibration environment in which the sensor operates. The fixing mechanism can be implemented as a fixing joint between the sensor and the mounting surface. Additionally, the O-ring and the sensor are configured with respect to one another and the mounting surface to maintain tension in the fixing joint.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 17, 2008
    Assignee: Honeywell International Inc.
    Inventors: William F. Eaton, Aaron J. Meyers
  • Patent number: 7170253
    Abstract: Latch control methods and systems are disclosed, including a latch that receives power from a motor associated with a latch. A sensor can be provided for monitoring the current consumption of the motor. A microcontroller can control the latch and/or the motor, based on the current consumption data received from the sensor concerning the current consumption of the motor. Monitoring of the current waveform of the motor therefore provides speed and direction feedback data for control of the latch. Additionally, a microprocessor can process instructions for controlling the interaction of the motor, the latch, the sensor and/or the microcontroller. Such a current monitoring control system is made possible by variation in current consumption of the motor during rotation as a result of commutation, which can be interrogated by measuring the voltage drop across the motor or a shunt resistor, or through the use of other current sensors, such as, for example, a Hall-effect type current sensor.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: January 30, 2007
    Assignee: Honeywell International Inc.
    Inventors: Nigel V. Spurr, Michael J. Shelley, Richard T. Hayes, William F. Eaton, Hugh D. Gibson, Alex Crawford, Ajaykumar Vaidhyanathan, Scott A. Vorwald, Kenneth V. Bechtold, Curtis B. Johnson, Duncan S. Murchie, Daniel D. Kilker, Abanni B. Maxwell, Patrick H. Shannon, Gillian J. Madden