Patents by Inventor William F. Hehmann

William F. Hehmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9174312
    Abstract: In accordance with an exemplary embodiment, a method for repairing a damaged metallic component using additive manufacturing techniques includes separating a damaged portion of the damaged metallic component from an undamaged portion of the damaged metallic component, measuring the undamaged portion to determine the dimensions of the removed damaged portion, fabricating a replacement portion using additive manufacturing techniques in accordance with the determined dimensions of the removed damaged portion, and joining the replacement portion with the undamaged portion of the damaged metallic component to form a repaired metallic component.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: November 3, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian G. Baughman, Gary Winchester, William F. Hehmann, Donald G. Godfrey
  • Patent number: 9120151
    Abstract: Substantially defect-free titanium aluminide components and methods are provided for manufacturing the same from articles formed by consolidation processes. The method includes providing an intermediate article comprised of a titanium aluminide alloy and formed by a consolidation process. The intermediate article is encapsulated with an aluminum-containing encapsulation layer. The intermediate article is compacted after the encapsulation step. A substantially defect-free titanium aluminide component comprises a compacted three-dimensional article comprised of titanium aluminide and formed by a consolidation process and an aluminum-containing encapsulation layer on at least one surface of the compacted three-dimensional article. The aluminum-containing encapsulation layer comprises an aluminide material, MCrAlY wherein M is cobalt, nickel, or a combination of cobalt and nickel, or TiAlCr.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 1, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Mark C. Morris, George Reimer, William F. Hehmann, Daira Legzdina, Richard Fox, Yiping Hu, Harry Lester Kington
  • Publication number: 20140259666
    Abstract: In accordance with an exemplary embodiment, a method for repairing a damaged metallic component using additive manufacturing techniques includes separating a damaged portion of the damaged metallic component from an undamaged portion of the damaged metallic component, measuring the undamaged portion to determine the dimensions of the removed damaged portion, fabricating a replacement portion using additive manufacturing techniques in accordance with the determined dimensions of the removed damaged portion, and joining the replacement portion with the undamaged portion of the damaged metallic component to form a repaired metallic component.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian G. Baughman, Gary Winchester, William F. Hehmann, Donald G. Godfrey
  • Publication number: 20140037983
    Abstract: Substantially defect-free titanium aluminide components and methods are provided for manufacturing the same from articles formed by consolidation processes. The method includes providing an intermediate article comprised of a titanium aluminide alloy and formed by a consolidation process. The intermediate article is encapsulated with an aluminum-containing encapsulation layer. The intermediate article is compacted after the encapsulation step. A substantially defect-free titanium aluminide component comprises a compacted three-dimensional article comprised of titanium aluminide and formed by a consolidation process and an aluminum-containing encapsulation layer on at least one surface of the compacted three-dimensional article. The aluminum-containing encapsulation layer comprises an aluminide material, MCrAlY wherein M is cobalt, nickel, or a combination of cobalt and nickel, or TiAlCr.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Mark C. Morris, George Reimer, William F. Hehmann, Daira Legzdina, Richard Fox, Yiping Hu, Harry Lester Kington
  • Patent number: 7959409
    Abstract: Methods are provided for repairing a vane assembly, where the vane assembly includes an inner annular housing, an outer annular housing, and a vane extending therebetween. In one embodiment, the method includes removing an identified section of the vane to thereby form a pocket in an inner surface of the outer annular housing, a slot through the inner annular housing, and an edge on the vane, inserting a replacement vane portion with an advanced coating through the formed slot such that a first edge of the replacement vane portion is disposed in the pocket and at least a portion of the first edge is spaced apart from at least a portion of the outer annular housing inner surface, and welding a section of the replacement vane portion to the annular inner annular housing. The repaired vane assembly is also provided.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: June 14, 2011
    Assignee: Honeywell International Inc.
    Inventors: Wen Guo, William F. Hehmann
  • Publication number: 20110112002
    Abstract: Methods are provided for cleaning a component having internal passages. A method includes contacting the component with an aqueous hydrogen fluoride solution without agitating the solution for a time period in a range of about 20 minutes to about an hour to dissolve a solid piece of blockage material blocking at least a portion of the internal passages, the aqueous hydrogen fluoride solution comprising, by volume, about 40 percent to about 60 percent hydrogen fluoride and optionally, a corrosion inhibitor, and the blockage material comprising a silicate and rinsing the component with water to remove at least a portion of the aqueous hydrogen fluoride solution from surfaces of the component defining at least a portion of the internal passages.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Timothy Hudson, William F. Hehmann, Rajiv Ratna Singh, Phil Roark, Ryan Hulse, Andrew Poss
  • Patent number: 7612312
    Abstract: A mobile support system for a hand-held laser welding wand includes a movable cart, a laser source, a fluid source, and a filler medium supply source. The laser source is mounted on the movable cart and is configured to supply laser light for the hand-held laser welding wand. The fluid source is mounted on the movable cart and is configured to supply cooling fluid for the hand-held laser welding wand. The filler medium supply source is mounted on the movable cart and is configured to supply a filler medium for use by the hand-held laser welding wand. The mobile support system is transportable to areas remote from a work shop environment, and provides stand-alone support for the hand-held laser welding wand.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: November 3, 2009
    Assignee: Honeywell International Inc.
    Inventors: Martin C. Baker, Clyde R. Taylor, William F. Hehmann
  • Publication number: 20090139967
    Abstract: A mobile support system for a hand-held laser welding wand includes a movable cart, a laser source, a fluid source, and a filler medium supply source. The laser source is mounted on the movable cart and is configured to supply laser light for the hand-held laser welding wand. The fluid source is mounted on the movable cart and is configured to supply cooling fluid for the hand-held laser welding wand. The filler medium supply source is mounted on the movable cart and is configured to supply a filler medium for use by the hand-held laser welding wand. The mobile support system is transportable to areas remote from a work shop environment, and provides stand-alone support for the hand-held laser welding wand.
    Type: Application
    Filed: February 11, 2005
    Publication date: June 4, 2009
    Inventors: Martin C. Baker, Clyde R. Taylor, William F. Hehmann
  • Publication number: 20080213092
    Abstract: Methods are provided for repairing a vane assembly, where the vane assembly includes an inner annular housing, an outer annular housing, and a vane extending therebetween. In one embodiment, the method includes removing an identified section of the vane to thereby form a pocket in an inner surface of the outer annular housing, a slot through the inner annular housing, and an edge on the vane, inserting a replacement vane portion with an advanced coating through the formed slot such that a first edge of the replacement vane portion is disposed in the pocket and at least a portion of the first edge is spaced apart from at least a portion of the outer annular housing inner surface, and welding a section of the replacement vane portion to the annular inner annular housing. The repaired vane assembly is also provided.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Wen Guo, William F. Hehmann
  • Patent number: 7316850
    Abstract: There is provided a method for depositing a modified MCrAlY coating on a turbine blade tip. The method utilizes laser deposition techniques to provide a metallurgical bond between a turbine blade substrate, such as a superalloy substrate, and the modified MCrAlY composition. Further the modified MCrAlY coating has sufficient thickness such that a post-welding grinding operation to size the turbine blade to a desired dimension will not remove the modified MCrAlY coating entirely. The modified MCrAlY coating thus remains on the finished turbine blade tip after grinding.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: January 8, 2008
    Assignee: Honeywell International Inc.
    Inventors: Yiping Hu, William F. Hehmann
  • Patent number: 7250081
    Abstract: Methods for repair of single crystal superalloys by laser welding and products thereof have been disclosed. The laser welding process may be hand held or automated. Laser types include: CO2, Nd:YAG, diode and fiber lasers. Parameters for operating the laser process are disclosed. Filler materials, which may be either wire or powder superalloys are used to weld at least one portion of a single crystal superalloy substrate.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: July 31, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Yiping Hu, William F. Hehmann, Murali Madhava
  • Patent number: 7038162
    Abstract: A hand-held laser welding wand includes one or more filler media delivery flow passages. The wand is dimensioned to be grasped with a single hand, thus filler media of various types and forms may be supplied to the weld area on a workpiece using various types of delivery systems and methods, including fully automated, semi-automated, or manually. The filler media may be delivered via the filler media delivery passages or separate from the passages.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: May 2, 2006
    Assignee: Honeywell International, Inc.
    Inventors: Martin C. Baker, Vincent Chung, Federico Renteria, William F. Hehmann
  • Patent number: 7012216
    Abstract: A hand-held laser welding wand includes internal flow passages through which filler media, gas, and coolant may flow. The wand is dimensioned to be grasped with a single hand, thus filler media of various types and forms, gas, and coolant may be supplied to the hand-held laser welding wand via external systems and delivery devices without substantially impairing operation of the wand.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: March 14, 2006
    Assignee: Honeywell International
    Inventors: Martin C. Baker, Clyde R. Taylor, Thomas M. Hughes, Federico Renteria, William F. Hehmann
  • Patent number: 6972390
    Abstract: A method is provided for repairing degraded and/or eroded areas on gas turbine blades and vanes. The method is directed to turbine blades and vanes made of advanced superalloy materials with high elevated-temperature properties. The method uses multiple laser beams to perform steps of preheating the repair area, welding the repair area, and post-welding heating of the repaired area. The method uses an array of two or more lasers to perform the steps of heating, welding, and post-weld heat treatment in nearly simultaneous operation thereby dramatically reducing or eliminating the hot cracking associated with other welding methods used with superalloy materials. The method is further directed to cladding or material buildup of degraded turbine blades where the weld material is the same as the matrix or better superalloy materials.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: December 6, 2005
    Assignee: Honeywell International, Inc.
    Inventors: Yiping Hu, William F. Hehmann
  • Patent number: 6968991
    Abstract: A diffusion bond mixture paint and method for repairing a single-crystal superalloy article that minimizes the amount of braze alloy applied to the article. The amount of boron and eutectic brittle borides of the wide gap brazing processes is minimized, resulting in a more robust repair. The braze paint includes an alloy powder mixture, a binder, and a carrier to thin the paint.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: November 29, 2005
    Assignee: Honeywell International, Inc.
    Inventors: Federico Renteria, William F Hehmann
  • Patent number: 6894247
    Abstract: A powder feed splitter and a machine using a powder feed splitter, to divide a powder flow into two or more streams in a predictable, adjustable, and reliable manner for use in material processing such as welding. A housing encloses an inlet disk having an inlet regulator preferably a disk, having an inlet tube which may be adjustable radially or laterally with respect to the housing. An adjustment mechanism can selectively move the inlet regulator to adjust the powder flow amongst the several powder outlet ports. Funnel-shaped cavities within the housing may have optional gas inlets to enable the introduction of additional gas to the separated powder flow streams. A one-way fit may be present between the interior powder flow splitter and the exterior casing. Smooth interior surfaces through the device prevent turbulence and buildup of powder.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: May 17, 2005
    Assignee: Honeywell International, Inc.
    Inventors: Federico Renteria, William F. Hehmann
  • Publication number: 20040169021
    Abstract: A novel and inventive hand held powder-fed laser fusion welding torch providing manual flexibility for laser welding with powder-fed material. The hand held laser includes a body, handle, and nozzle assembly. The nozzle may be shrouded by a cover that is slightly spaced apart from the nozzle. The gap between the two may provide space through which inert gas may flow. Laser light from a remote source shines through the nozzle's central aperture. The nozzle aperture may be circumscribed by powder channel outlets aligned upon a working focal point coincident with the laser beam to treat a workpiece. A proximity sensor may enable selective welding torch operation according to the presence of a workpiece.
    Type: Application
    Filed: February 26, 2004
    Publication date: September 2, 2004
    Inventors: Martin C. Baker, Santosh K. Das, Richard F. Haraz, William F. Hehmann, Vincent J. Papotto, Federico Renteria, Gary Winchester
  • Patent number: 6774338
    Abstract: A novel and inventive hand held powder-fed laser fusion welding torch providing manual flexibility for laser welding with powder-fed material. The hand held laser includes a body, handle, and nozzle assembly. The nozzle may be shrouded by a cover that is slightly spaced apart from the nozzle. The gap between the two may provide space through which inert gas may flow. Laser light from a remote source shines through the nozzle's central aperture. The nozzle aperture may be circumscribed by powder channel outlets aligned upon a working focal point coincident with the laser beam to treat a workpiece. A proximity sensor may enable selective welding torch operation according to the presence of a workpiece.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 10, 2004
    Assignee: Honeywell International, Inc.
    Inventors: Martin C. Baker, Santosh K. Das, Richard F. Haraz, William F. Hehmann, Vincent J. Papotto, Federico Renteria, Gary Winchester
  • Publication number: 20040050909
    Abstract: A diffusion bond mixture paint and method for repairing a single-crystal superalloy article that minimizes the amount of braze alloy applied to the article. The amount of boron and eutectic brittle borides of the wide gap brazing processes is minimized, resulting in a more robust repair. The braze paint includes an alloy powder mixture, a binder, and a carrier to thin the paint.
    Type: Application
    Filed: July 3, 2002
    Publication date: March 18, 2004
    Inventors: Federico Renteria, William F. Hehmann
  • Publication number: 20040016726
    Abstract: A powder feed splitter and a machine using a powder feed splitter, to divide a powder flow into two or more streams in a predictable, adjustable, and reliable manner for use in material processing such as welding. A housing encloses an inlet disk having an inlet regulator preferably a disk, having an inlet tube which may be adjustable radially or laterally with 000respect to the housing. An adjustment mechanism can selectively move the inlet regulator to adjust the powder flow amongst the several powder outlet ports. Funnel-shaped cavities within the housing may have optional gas inlets to enable the introduction of additional gas to the separated powder flow streams. A one-way fit may be present between the interior powder flow splitter and the exterior casing. Smooth interior surfaces through the device prevent turbulence and buildup of powder.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 29, 2004
    Inventors: Federico Renteria, William F. Hehmann