Patents by Inventor William G. Lee

William G. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7494802
    Abstract: The present invention relates to a biopolymer covering for a tissue surface including, for example, a dressing, a bandage, a drape such as a bandage contact lens, a composition or covering to protect tissue, a covering to prevent adhesions, to exclude bacteria, to inhibit bacterial activity, or to promote healing or growth of tissue. An example of such a composition is an amniotic membrane covering for an ocular surface. Use of a covering for a tissue surface according to the invention eliminates the need for suturing. The invention also includes devices facilitating the fastening of a membrane to a support, culture inserts, compositions, methods, and kits for making and using coverings for a tissue surface and culture inserts. Compositions according to the invention may include cells grown on a membrane or attached to a membrane, and such compositions may be used as scaffolds for tissue engineering or tissue grafts.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: February 24, 2009
    Assignee: TissueTech, Inc.
    Inventors: Scheffer C. G. Tseng, Helga Sandoval, William G. Lee
  • Publication number: 20040181240
    Abstract: The present invention relates to a biopolymer covering for a tissue surface including, for example, a dressing, a bandage, a drape such as a bandage contact lens, a composition or covering to protect tissue, a covering to prevent adhesions, to exclude bacteria, to inhibit bacterial activity, or to promote healing or growth of tissue. An example of such a composition is an amniotic membrane covering for an ocular surface. Use of a covering for a tissue surface according to the invention eliminates the need for suturing. The invention also includes devices facilitating the fastening of a membrane to a support, culture inserts, compositions, methods, and kits for making and using coverings for a tissue surface and culture inserts. Compositions according to the invention may include cells grown on a membrane or attached to a membrane, and such compositions may be used as scaffolds for tissue engineering or tissue grafts.
    Type: Application
    Filed: April 19, 2004
    Publication date: September 16, 2004
    Inventors: Scheffer C.G. Tseng, Helga Sandoval, William G. Lee
  • Patent number: 5634943
    Abstract: A biocompatible polyethylene oxide gel implant and method for production which can be injected into the human body for tissue replacement and augmentation. The implant is prepared by dissolving a sample of essentially pure polyethylene oxide in a saline solution in a sealed canister, removing all free oxygen from the container and replacing it with an inert gas, such as argon, and irradiating the canister with a gamma ray source to simultaneously crosslink the polyethylene oxide while sterilizing it. The gel can then be placed into a syringe and injected into the body.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: June 3, 1997
    Assignee: University of Miami
    Inventors: Franck L. Villain, Jean-Marie A. Parel, William G. Lee, Gabriel Simon
  • Patent number: 5607437
    Abstract: The present invention provides a surgical technique and instrument kit that allows for subtle modification of the corneal curvature by interlamellar injection of a synthetic gel at the corneal periphery while sparing the optical zone. The gel viscosity, volume and disposition within the surgical annular track as well as the diameter of the track, width, depth, and location are all parameters in the refractive change obtained. Following ultrasonic pachymetry performed centrally and at a selected wound entrance located about 2.5 to 3.5 mm from the apex, a one millimeter or so wide, about 75-85% corneal thickness depth radial incision is performed with a micrometric diamond knife adjusted to about 86% corneal thickness. Inserted through the partial-depth incision, a corkscrew-like dissector or helicoidal spatula forms a 360.degree. annular track centered about the apex. A transparent gel is manually injected through the incision, filling the annular channel.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: March 4, 1997
    Assignee: University of Miami
    Inventors: Gabriel Simon, William G. Lee, Jean-Marie A. Parel
  • Patent number: 5547468
    Abstract: The present invention provides a surgical technique and instrument kit that allows for subtle modification of the corneal curvature by interlamellar injection of a synthetic gel at the corneal periphery while sparing the optical zone. The gel viscosity, volume and disposition within the surgical annular track as well as the diameter of the track, width, depth, and location are all parameters in the refractive change obtained. Following ultrasonic pachymetry performed centrally and at a selected wound entrance located about 2.5 to 3.5 mm from the apex, a one millimeter or so wide, about 75-85% corneal thickness depth radial incision is performed with a micrometric diamond knife adjusted to about 86% corneal thickness. Inserted through the partial-depth incision, a corkscrew-like dissector or helicoidal spatula forms a 360.degree. annular track centered about the apex. A transparent gel is manually injected through the incision, filling the annular channel.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: August 20, 1996
    Assignee: University of Miami
    Inventors: Gabriel Simon, William G. Lee, Jean-Marie A. Parel
  • Patent number: 5423330
    Abstract: A surgical instrument is provided having a tubular body including a distal portion, a proximal portion and a mid portion. A cutting member having a cutting edge is longitudinally received within the tubular body for guided reciprocal movement therein between a cutting position wherein the cutting edge extends from the distal portion and a non-cutting position wherein the cutting edge is retracted within the tubular body. A urging mechanism is also provided within the mid portion of the tubular body for urging the cutting member to the cutting position. A vacuum source is coupled to the cutting member at a proximal end thereof and provides a vacuum directed to the distal portion to hold tissue to be cut. A method of cutting the tissue is also provided.
    Type: Grant
    Filed: March 10, 1993
    Date of Patent: June 13, 1995
    Assignee: The University of Miami
    Inventor: William G. Lee
  • Patent number: 5372580
    Abstract: The present invention provides a surgical technique and instrument kit that allows for subtle modification of the corneal curvature by interlamellar injection of a synthetic gel at the corneal periphery while sparing the optical zone. The gel viscosity, volume and disposition within the surgical annular track as well as the diameter of the track, width, depth, and location are all parameters in the refractive change obtained. Following ultrasonic pachymetry performed centrally and at a selected wound entrance located about 2.5 to 3.5 mm from the apex, a one millimeter or so wide, about 75-85% corneal thickness depth radial incision is performed with a micrometric diamond knife adjusted to about 86% corneal thickness. Inserted through the partial-depth incision, a corkscrew-like dissector or helicoidal spatula forms a 360.degree. annular track centered about the apex. A transparent gel is manually injected through the incision, filling the annular channel.
    Type: Grant
    Filed: February 19, 1992
    Date of Patent: December 13, 1994
    Assignee: University of Miami
    Inventors: Gabriel Simon, Jean-Marie A. Parel, William G. Lee