Patents by Inventor William G. Manns

William G. Manns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5592211
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: January 7, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Vernon R. Porter, William G. Manns, Anthony B. Wood, Jerry D. Merryman, Don J. Weeks, S. Charles Baber, Thomas C. Penn
  • Patent number: 5174150
    Abstract: A device and a method are provided for reducing false indications of leakage between the inner and outer walls of a double-wall tank. The device reduces contact between a sensor assembly and condensation which forms between the walls, preferably comprising an isolation stand-off flange secured around a portion of the sensor assembly. The method comprises spacing the sensor assembly from the walls to reduce the potential for contact between the sensor assembly and condensation.
    Type: Grant
    Filed: October 29, 1991
    Date of Patent: December 29, 1992
    Assignee: In-Situ, Inc.
    Inventor: William G. Mann
  • Patent number: 5095447
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: March 10, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Anthony B. Wood
  • Patent number: 5046110
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: September 3, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Lori A. Carucci, Don J. Weeks, William G. Manns
  • Patent number: 5027132
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data decription is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: August 31, 1989
    Date of Patent: June 25, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Don J. Weeks, Jerry D. Merryman, Chyi N. Sheng
  • Patent number: 5018210
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: May 21, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Jerry D. Merryman, Thomas C. Penn, William G. Manns, Don J. Weeks, Anthony B. Wood
  • Patent number: 5018212
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: May 21, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Anthony B. Wood, David A. Norwood, Don J. Weeks, Michael Gordon
  • Patent number: 5001764
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: March 19, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Anthony B. Wood, William G. Manns, David A. Norwood, Don J. Weeks, Chyi N. Sheng
  • Patent number: 4991977
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: February 12, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Anthony B. Wood, Ronald S. Drafz, Don J. Weeks
  • Patent number: 4989255
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: January 29, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Anthony B. Wood, David A. Norwood, Theodore R. Bambenek
  • Patent number: 4984282
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: January 8, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, David A. Norwood, Don J. Weeks, Chyi N. Sheng, Anthony B. Wood
  • Patent number: 4979223
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect are a consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: December 18, 1990
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Anthony B. Wood, David A. Norwood
  • Patent number: 4969200
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The data base is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: November 6, 1990
    Assignee: Texas Instruments Incorporated
    Inventors: William G. Manns, Anthony B. Wood, Michael Gordon, Don J. Weeks, Tom G. Hudiburgh, David A. Norwood
  • Patent number: 4912487
    Abstract: A laser pattern inspection and/or writing system which writes or inspects a pattern on a target on a stage, by raster scanning the target pixels. Inspection can also be done by substage illumination with non-laser light. A database, organized into frames and strips, represents an ideal pattern as one or more polygons. Each polygon's data description is contained within a single data frame. The database is transformed into a turnpoint polygon representation, then a left and right vector representation, then an addressed pixel representation, then a bit-mapped representation of the entire target. Most of the transformations are carried out in parallel pipelines. Guardbands around polygon sides are used for error filtering during inspection. Guardbands are polygons, and frames containing only guardband information are sent down dedicated pipelines. Error filtering also is done at the time of pixel comparisons of ideal with real patterns, and subsequently during defect area consolidation.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: March 27, 1990
    Assignee: Texas Instruments Incorporated
    Inventors: Vernon R. Porter, William G. Manns, Anthony B. Wood, S. Charles Baber, Thomas C. Penn
  • Patent number: 4546406
    Abstract: An electronic circuit interconnection system provides high density mounting of ceramic chip-carrier integrated circuit devices or other beam-lead, dual-in-line (DIP), tape-automated-bonded (TAB), flip-chip, or direct-mounted i.c. devices with wire-bonded interconnects or the like on an economical, dimensionally-stable, interconnection substrate which has high heat dissipating properties. The substrate has glass components which are fused onto etched metal patterns and which are proportioned relative to the metal patterns so that the heat-expansion properties of the substrate correspond to those of the i.c. devices to maintain bond integrity between the i.c. leads and circuit paths on the substrate and so that the substrate has sufficient heat-dissipating properties to permit the high density i.c. mounting.
    Type: Grant
    Filed: May 7, 1984
    Date of Patent: October 8, 1985
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas S. Spinelli, William G. Manns, Donald F. Weirauch
  • Patent number: 4472762
    Abstract: An electronic circuit interconnection system provides high density mounting on ceramic chip-carrier integrated circuit devices or other beam-lead, dual-in-line (DIP), tape-automated-bonded (TAB), flip-chip, or direct-mounted i.c. devices with wire-bonded interconnects or the like on an economical, dimensionally-stable, interconnection substrate which has high heat dissipating properties. The substrate has glass components which are fused onto etched metal patterns and which are proportioned relative to the metal patterns so that the heat-expansion properties of the substrate correspond to those of the i.c. devices to maintain bond integrity between the i.c. leads and circuit paths on the substrate and so that the substrate has sufficient heat-dissipating properties to permit the high density i.c. mounting.
    Type: Grant
    Filed: November 1, 1982
    Date of Patent: September 18, 1984
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas S. Spinelli, William G. Manns, Donald F. Weirauch
  • Patent number: 4385202
    Abstract: An electronic circuit interconnection system permitting high density mounting of ceramic chip-carrier integrated circuit devices or other beam-lead, dual-in-line (DIP), tape-automated-bonded (TAB), flip-chip, or direct-mounted i.c. devices with wire-bonded interconnects or the like has economical, dimensionally-stable, interconnection substrate which has high heat dissipating properties. The substrate has glass components which are fused onto etched metal patterns and which are proportioned relative to the metal patterns so that the heat-expansion properties of the substrate correspond to those of the i.c. devices to maintain bond integrity between the i.c. leads and circuit paths on the substrate and so that the substrate has sufficient heat-dissipating properties to permit the high density i.c. mounting.
    Type: Grant
    Filed: September 25, 1980
    Date of Patent: May 24, 1983
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas S. Spinelli, William G. Manns, Donald F. Weirauch
  • Patent number: 4160310
    Abstract: A metal-dielectric electron beam scanning stack and method for making the same is disclosed. The electron beam scanning stack subassembly is fabricated from a series of metal plates, each having a plurality of apertures defined therein at least one plate comprising a spacer plate. Individual apertures are aligned with corresponding apertures of all other plates to form a plurality of electron beam channels. These plates are electrically isolated from and bonded together by spacer plates coated with dielectric material. By etching isolation channels in a selected pattern in these plates, control plates are fabricated having a plurality of isolated conductive portions arranged in selected patterns. Subassemblies are bonded together using either dielectric material or dielectrically coated metal spacer plates having a plurality of correspondingly aligned apertures. Contact leads from the plurality of isolated conductive portions are isolation etched into the inactive peripheral area of the plate.
    Type: Grant
    Filed: December 2, 1976
    Date of Patent: July 10, 1979
    Assignee: Texas Instruments Incorporated
    Inventor: William G. Manns
  • Patent number: 4135281
    Abstract: A metal-dielectric electron beam scanning stack and method for making the same is disclosed. The electron beam scanning stack subassembly is fabricated from at least a pair of metal plates, each having a plurality of apertures defined therein. Individual apertures are aligned with corresponding apertures of the other plate to form a plurality of electron beam channels. These plates are electrically isolated from and bonded to each other by a layer of dielectric material without the use of a spacer plate. By etching isolation channels in each of these plates in a selected pattern, control plates are fabricated having a plurality of isolated conductive portions arranged in selected patterns. These subassemblies are bonded together using either dielectric material or dielectrically coated metal spacer plates having a plurality of corresponding aligned apertures. Contact leads from the plurality of isolated conductive portions are isolation etched into the inactive peripheral area of the plate.
    Type: Grant
    Filed: December 2, 1976
    Date of Patent: January 23, 1979
    Assignee: Texas Instruments Incorporated
    Inventor: William G. Manns
  • Patent number: 4008950
    Abstract: An electrochromic display cell having a transparent front panel with an internal conductive coating providing a pleasing external appearance, and masking a counter-electrode affixed thereto; said internal coating having a window area to permit external viewing of display electrodes affixed to the back panel, which is sealed to the front panel with a ring spacer to provide an electrolyte chamber about five to ten mils thick; external electrode contacts to the electrical leads to the display electrodes are arranged on the back or front panel.
    Type: Grant
    Filed: July 7, 1975
    Date of Patent: February 22, 1977
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Chapman, Raymond J. Jasinski, William G. Manns