Patents by Inventor William G. Orinski

William G. Orinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10576292
    Abstract: An Implantable Pulse Generator (IPG) operable as a Deep Brain Stimulator (DBS) is disclosed which is mountable to the skull of a DBS patient, and which therefore is much closer to the site of intended therapy. The IPG includes an electronics section, a charging coil section, a connector block section configured to connect to the proximal end of implanted leads, and an electrode wire section connecting the connector block section to the electronics section. The electronic section includes a housing that is positionable into a hole formed in the patient's skull. Once so positioned, the housing may be affixed to the skull via bone screws. The charging coil section may be separate from and non-overlapping with the electronics section, or the charging coil section may encircle the electronics section.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: William G. Orinski
  • Patent number: 10441778
    Abstract: An implantable medical device for providing phototherapy to a patient's brain is disclosed. The device includes a housing containing a light source for providing phototherapy to a patient. A light path is attached to the housing. The implantable medical device is configured to be positioned between a patient's skull and scalp with the light path extending into the patient's brain, such that light from the light source can irradiate a target position within the patient's brain. The implantable medical device is powered and controlled by an implantable pulse generator (IPG) that may be implanted into a patient's tissue remotely from the device and connected to the device by wire leads.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: William G. Orinski
  • Patent number: 10420950
    Abstract: An implantable pulse generator (IPG) allowing for trial stimulation in a fully implanted solution is disclosed. At the time the leads are implanted, a micro IPG having lead connection block(s) is also implanted and connected to the leads. To keep the micro IPG suitably small, it preferably does not include a battery, and is instead powered continuously via magnetic induction using a magnetic field produced by an external charger, such as a charging patch. A coil in the micro IPG picks up and rectifies this magnetic field to provide power to stimulating electronics in the IPG. Because of its small size (e.g., ?10 cm3), implantation of the micro IPG can occur at the same time the leads are implanted in the patient without inconvenience. Should stimulation therapy with the micro IPG prove effective, a larger, permanent IPG can later be implanted and connected to the implanted leads.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Anne Pianca, Bernard Malinowski, William G. Orinski
  • Patent number: 10213596
    Abstract: A skull-mountable medical device is disclosed. The device includes a housing containing a light source for providing phototherapy to a patient. A light pipe is attached to the housing. The device is configured to be positioned on a patient's skull with the light pipe extending into the patient's brain, such that light from the light source can irradiate a target position within the patient's brain. Once so positioned, the housing may be affixed to the skull via bone screws. The device is powered and controlled by an implantable pulse generator (IPG) that may be implanted into a patient's tissue remotely from the device and connected to the device by wire leads.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: February 26, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: William G. Orinski
  • Publication number: 20170281928
    Abstract: An implantable medical device for providing phototherapy to a patient's brain is disclosed. The device includes a housing containing a light source for providing phototherapy to a patient. A light path is attached to the housing. The implantable medical device is configured to be positioned between a patient's skull and scalp with the light path extending into the patient's brain, such that light from the light source can irradiate a target position within the patient's brain. The implantable medical device is powered and controlled by an implantable pulse generator (IPG) that may be implanted into a patient's tissue remotely from the device and connected to the device by wire leads.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 5, 2017
    Inventor: William G. Orinski
  • Publication number: 20170281927
    Abstract: A skull-mountable medical device is disclosed. The device includes a housing containing a light source for providing phototherapy to a patient. A light pipe is attached to the housing. The device is configured to be positioned on a patient's skull with the light pipe extending into the patient's brain, such that light from the light source can irradiate a target position within the patient's brain. Once so positioned, the housing may be affixed to the skull via bone screws. The device is powered and controlled by an implantable pulse generator (IPG) that may be implanted into a patient's tissue remotely from the device and connected to the device by wire leads.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 5, 2017
    Inventor: William G. Orinski
  • Publication number: 20170151438
    Abstract: An Implantable Pulse Generator (IPG) operable as a Deep Brain Stimulator (DBS) is disclosed which is mountable to the skull of a DBS patient, and which therefore is much closer to the site of intended therapy. The IPG includes an electronics section, a charging coil section, a connector block section configured to connect to the proximal end of implanted leads, and an electrode wire section connecting the connector block section to the electronics section. The electronic section includes a housing that is positionable into a hole formed in the patient's skull. Once so positioned, the housing may be affixed to the skull via bone screws. The charging coil section may be separate from and non-overlapping with the electronics section, or the charging coil section may encircle the electronics section.
    Type: Application
    Filed: October 12, 2016
    Publication date: June 1, 2017
    Inventor: William G. Orinski
  • Publication number: 20170151440
    Abstract: An implantable pulse generator (IPG) allowing for trial stimulation in a fully implanted solution is disclosed. At the time the leads are implanted, a micro IPG having lead connection block(s) is also implanted and connected to the leads. To keep the micro IPG suitably small, it preferably does not include a battery, and is instead powered continuously via magnetic induction using a magnetic field produced by an external charger, such as a charging patch. A coil in the micro IPG picks up and rectifies this magnetic field to provide power to stimulating electronics in the IPG. Because of its small size (e.g., ?10 cm3), implantation of the micro IPG can occur at the same time the leads are implanted in the patient without inconvenience. Should stimulation therapy with the micro IPG prove effective, a larger, permanent IPG can later be implanted and connected to the implanted leads.
    Type: Application
    Filed: October 25, 2016
    Publication date: June 1, 2017
    Inventors: Jordi Parramon, Anne Pianca, Bernard Malinowski, William G. Orinski
  • Patent number: 9474546
    Abstract: Exemplary insertion tools for facilitating insertion of an electrode array into a bodily orifice include a stylet assembly having a stylet configured to be inserted into a lumen of the electrode array, a slide assembly configured to at least partially house the stylet assembly, and a handle assembly configured to engage at least a portion of the slide assembly. The slide assembly may be configured to selectively disengage from the handle assembly. The stylet assembly may be configured to selectively disengage from the slide assembly while the stylet is still inserted into the lumen of the electrode array. Corresponding systems and methods are also described.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: October 25, 2016
    Assignee: Advanced Bionics AG
    Inventors: William G. Orinski, Steve J. Blomquist, Mark B. Downing
  • Patent number: 9402991
    Abstract: A microcircuit integrated cochlear electrode array and a process for the manufacture thereof, the electrode array comprising a multiconductor tail portion with longitudinally spaced outwardly exposed electrode receiving pads and a flat multiconductor head portion connected to the tail portion and having spaced outwardly exposed circuit attachment pads, the tail and head portions being laminated between a nonconductive film substrate and an insulating cover and the tail portion being helically wrapped into a helix with the electrode receiving circuit attachment pads exposed and carrying ring electrodes overmolded with a suitable polymeric material.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: August 2, 2016
    Assignee: ADVANCED BIONICS, LLC
    Inventor: William G. Orinski
  • Patent number: 8939993
    Abstract: Exemplary systems for loading a pre-curved electrode array onto a stylet include a loading tool and a stylet retainer. The loading tool includes a docking assembly comprising a plurality of wing members that form a receptacle configured to receive a proximal portion of the stylet, a channel assembly comprising a channel configured to receive and allow passage therethrough of the pre-curved electrode array, the channel further configured to receive a distal portion of the stylet, and a connecting member configured to connect the channel assembly to the docking assembly. The stylet retainer is configured to couple to the loading tool to retain the stylet within the loading tool while the pre-curved electrode array is loaded onto the stylet. Corresponding methods are also described.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: January 27, 2015
    Assignee: Advanced Bionics AG
    Inventors: Chuladatta Thenuwara, William G. Orinski
  • Patent number: 8915926
    Abstract: Exemplary loading tools configured to facilitate loading of a pre-curved electrode array onto a stylet include a docking assembly, a channel assembly, and a connecting member configured to connect the channel assembly to the docking assembly and maintain a distance therebetween. The docking assembly is configured to couple to the stylet. The channel assembly includes a channel configured to receive and allow passage therethrough of the pre-curved electrode array. The channel is aligned with the docking assembly such that when the stylet is coupled to the docking assembly, the stylet is located at least partially within the channel.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: December 23, 2014
    Assignee: Advanced Bionics AG
    Inventors: Chuladatta Thenuwara, William G. Orinski, Janusz A. Kuzma, Steve J. Blomquist
  • Patent number: 8897894
    Abstract: A microcircuit integrated cochlear electrode array and a process for the manufacture thereof, the electrode array comprising a multiconductor tail portion with longitudinally spaced outwardly exposed electrode receiving pads and a flat multiconductor head portion connected to the tail portion and having spaced outwardly exposed circuit attachment pads, the tail and head portions being laminated between a nonconductive film substrate and an insulating cover and the tail portion being helically wrapped into a helix with the electrode receiving circuit attachment pads exposed and carrying ring electrodes overmolded with a suitable polymeric material.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 25, 2014
    Assignee: Advanced Bionics LLC
    Inventor: William G. Orinski
  • Patent number: 8849426
    Abstract: A microcircuit cochlear electrode array and process for the manufacture thereof, the electrode array comprising first and second flat microcircuits comprising a plurality of laterally spaced longitudinally extending electrical conductors and longitudinally spaced electrode receiving pads extending laterally from the conductors, the first flat microcircuit being helically wrapped in a first direction along an axis with its longitudinally spaced electrode receiving pads exposed on an end of an outer surface hereof and the second flat microcircuit helically being wrapped in an opposite direction on and along an outer surface of the first helically wrapped microcircuit with its longitudinally spaced electrode receiving pads exposed on an outer surface thereof adjacent the exposed longitudinally spaced electrode receiving pads of the first microcircuit, and ring electrodes around and electrically secured to the electrode receiving pads of the first and second microcircuits.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: September 30, 2014
    Assignee: Advanced Bionics AG
    Inventor: William G. Orinski
  • Patent number: 8753352
    Abstract: Exemplary insertion tools, systems, and methods for inserting a pre-curved electrode array portion of a lead into a bodily orifice are described herein. An exemplary insertion tool includes a handle assembly, a slider assembly, an insertion assembly coupled to the handle assembly, and a retractor assembly disposed at least partially within the handle assembly and configured to selectively couple to a straightening member inserted into the pre-curved electrode array portion and at least partially retract the straightening member from the pre-curved electrode array portion in response to actuation by a user of the slider assembly. The retractor assembly may comprise a spring-loaded retractor member configured to move from a distal position to a proximal position in response to actuation by the user of the slider assembly to at least partially retract the straightening member from the pre-curved electrode array portion. Corresponding insertion tools, systems, and methods are also described.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: June 17, 2014
    Assignee: Advanced Bionics AG
    Inventors: Chuladatta Thenuwara, Timothy Beerling, Mark Downing, Paul Hoffman, William G. Orinski
  • Patent number: 8538530
    Abstract: An implantable medical device includes a housing component comprising a flexure; and a ceramic feedthrough attached to the flexure such that the flexure reduces transmission of forces from housing component to the ceramic feedthrough. According to one illustrative embodiment, the implantable medical device is a cochlear implant which includes a titanium feedthrough case made up of a body portion and a flexure; and a ceramic feedthrough being hermetically joined to the flexure by an active braze, the flexure reducing transmission of forces from the titanium feedthrough case to the ceramic feedthrough.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: September 17, 2013
    Assignee: Advanced Bionics
    Inventor: William G. Orinski
  • Patent number: 8332052
    Abstract: A microcircuit cochlear electrode array and process for the manufacture thereof, the electrode array comprising first and second flat microcircuits comprising a plurality of laterally spaced longitudinally extending electrical conductors and longitudinally spaced electrode receiving pads extending laterally from the conductors, the first flat microcircuit being helically wrapped in a first direction along an axis with its longitudinally spaced electrode receiving pads exposed on an end of an outer surface hereof and the second flat microcircuit helically being wrapped in an opposite direction on and along an outer surface of the first helically wrapped microcircuit with its longitudinally spaced electrode receiving pads exposed on an outer surface thereof adjacent the exposed longitudinally spaced electrode receiving pads of the first microcircuit, and ring electrodes around and electrically secured to the electrode receiving pads of the first and second microcircuits.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: December 11, 2012
    Assignee: Advanced Bionics
    Inventor: William G. Orinski
  • Patent number: 8250745
    Abstract: A process for manufacturing a single microcircuit into an integrated cochlear electrode array includes securing and supporting a nonconductive film substrate; attaching a metallic ribbon to a surface of the substrate; machining a flat multiconductor microcircuit from the ribbon to produce a flat elongated multiconductor tail portion with spaced outwardly exposed electrode receiving pads, and a flat multiconductor head portion connected to the tail portion and having spaced outwardly exposed attachment pads; laminating the flat microcircuit between the film substrate and an insulating cover; excising the laminated microcircuit from the film substrate with the electrode receiving pads exposed; wrapping the tail portion of the excised laminated microcircuit into a helix with the exposed electrode receiving pads wrapped around the insulating cover; mounting and electrically connecting the ring electrodes on and to the exposed electrode pads; and overmolding the helix tail portion with a polymeric material to read
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 28, 2012
    Assignee: Advanced Bionics, LLC
    Inventor: William G. Orinski
  • Patent number: 8027735
    Abstract: A headpiece for a cochlear implant system includes a transcutaneous transmission coil that transfers power and/or data to an implantable device implanted under a user's skin. The headpiece includes a magnet for holding the transmission coil in close proximity to the receiver coil in the implanted device, which also contains a magnet, and provides the desired alignment between the coils so that inductive coupling may efficiently occur. The headpiece has a bottom surface for skin contact that includes a plurality of flexible bumps configured to distribute pressure over a large surface area while allowing blood flow throughout the area. This also provides friction contact with the skin to help secure the headpiece, reducing movement due to lateral loading, while reducing skin irritation and erosion.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 27, 2011
    Assignee: Advanced Bionics, LLC
    Inventors: George Tziviskos, Michael D. Brownen, William G. Orinski
  • Publication number: 20080109011
    Abstract: Exemplary loading tools configured to facilitate loading of a pre-curved electrode array onto a stylet include a docking assembly, a channel assembly, and a connecting member configured to connect the channel assembly to the docking assembly and maintain a distance therebetween. The docking assembly is configured to couple to the stylet. The channel assembly includes a channel configured to receive and allow passage therethrough of the pre-curved electrode array. The channel is aligned with the docking assembly such that when the stylet is coupled to the docking assembly, the stylet is located at least partially within the channel.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 8, 2008
    Applicant: Advanced Bionics Corporation
    Inventors: Chuladatta Thenuwara, William G. Orinski, Janusz A. Kuzma, Steve J. Blomquist