Patents by Inventor William Gauthier

William Gauthier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200130951
    Abstract: A semi-autonomous processing system for processing objects is disclosed. The semi-autonomous processing system includes an input conveyance system for moving objects to a presentation area, a perception system including perception units that are directed toward a detection area for providing perception data regarding an object in the presentation area, at least two transport systems, each of which is adapted to receive the object and move the object in either of reciprocal directions, and a manual workstation area between the perception area the at least two transport systems.
    Type: Application
    Filed: October 30, 2019
    Publication date: April 30, 2020
    Inventors: Thomas Wagner, Thomas Allen, William Hartman Fort, Kyle Maroney, Samuel Naseef, Andrew Gauthier, Kevin Ahearn, John Richard Amend, JR., Benjamin Cohen, Michael Dawson-Haggerty, Christopher Geyer, Jennifer Eileen King, Thomas Koletschka, Matthew T. Mason, William Chu-Hyon McMahan, Gene Temple Price, Joseph Romano, Daniel Smith, Siddhartha Srinivasa, Prasanna Velagapudi
  • Publication number: 20200030994
    Abstract: A method is disclosed of changing a tool on a programmable motion device. The method includes the steps of moving an attachment portion of an end effector of the programmable motion device in a continuous motion; while the attachment portion of the end effector moves in the continuous motion, engaging one of: the attachment portion of the end effector with the tool, or the tool attached to the attachment portion of the end effector with an exchange system, and continuing to move the attachment portion of the end effector in the continuous motion to change a connection status of the attachment portion of the end effector while the attachment portion of the end effector moves in the continuous motion.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Thomas Wagner, John Richard Amend, JR., William Farmer, Andrew Gauthier, Victoria Hinchey, Kyle Maroney, Matthew T. Mason, Richard Musgrave, Samuel Naseef, Thomas Allen
  • Patent number: 10363012
    Abstract: An ultrasonic diagnostic imaging system is described which utilizes one or more transducer arrays affixed to the head of a patient to diagnose and treat stroke victims. The transducer headset produces a two or three dimensional image of the vasculature inside the cranium, preferably assisted by a microbubble contrast agent. A vascular flow map is produced by the system which may be diagnosed for signs of a blood clot. If a blood clot is detected, a therapeutic beam is transmitted while the contrast agent is present to break up the blood clot by the disruption of microbubbles. The headset may also be used in a monitoring application to detect the recurrence of blood clots in a stroke victim.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 30, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Theodore J. Browning, William Shi, Jeffry E. Powers, Michalakis Averkiou, Thomas Gauthier
  • Publication number: 20190217471
    Abstract: A programmable motion system is disclosed that includes a dynamic end effector system. The dynamic end effector system includes a plurality of acquisition units that are provided at an exchange station within an area accessible by the programmable motion device, and a coupling system for coupling any of the plurality of acquisition units to an end effector of the programmable motion device such that any of the acquisition units may be automatically selected from the exchange station and used by the programmable motion device without requiring any activation or actuation by the exchange station and without requiring any intervention by a human.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 18, 2019
    Inventors: Joseph ROMANO, William Chu-Hyon MCMAHAN, Benjamin COHEN, Andrew GAUTHIER, Matthew T. MASON, Thomas WAGNER, Prasanna VELAGAPUDI, Michael DAWSON-HAGGERTY
  • Patent number: 10351640
    Abstract: Methods of forming a catalyst, catalysts, polymerization processes and polymers formed therefrom are described herein. The method of forming a catalyst generally includes contacting an alkyl magnesium compound with an alcohol to form a magnesium alkoxide compound; contacting the magnesium alkoxide compound with a first titanium alkoxide and a first agent to form a reaction product “A”, wherein the titanium alkoxide and the first agent are nonblended individual components prior to contacting the magnesium alkoxide; and sequentially contacting the reaction product “A” with a second agent, followed by a third agent, and subsequently a first reducing agent to form a catalyst component.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 16, 2019
    Assignee: Fina Technology, Inc.
    Inventors: Lei Zhang, William Gauthier
  • Patent number: 10240009
    Abstract: A composite may include polylactic acid, polyethylene, and optionally a compatibilizer. The composite may be formed by combining the polylactic acid with the polyethylene. The composite may be formed into an extruded article.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: March 26, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Jason Clark, John Ashbaugh, Fengkui Li, David Rauscher, William Gauthier
  • Publication number: 20160257792
    Abstract: A composite may include polylactic acid, polyethylene, and optionally a compatibilizer. The composite may be formed by combining the polylactic acid with the polyethylene. The composite may be formed into an extruded article.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 8, 2016
    Inventors: Jason Clark, John Ashbaugh, Fengkui Li, David Rauscher, William Gauthier
  • Patent number: 9127105
    Abstract: Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn??(1) or by the formula: B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?a are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: September 8, 2015
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Patent number: 8941006
    Abstract: A photovoltaic cell containing at least one substrate, two electrode layers, an organic photovoltaic layer situated between the two electrode layers, and an oxygen scavenger composition.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: January 27, 2015
    Assignee: Fina Technology, Inc.
    Inventor: William Gauthier
  • Patent number: 8735519
    Abstract: The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 27, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Patent number: 8710162
    Abstract: Polymerization processes in a bulk loop reactor are described herein. In particular, a method of contacting a flow of metallocene with a flow of propylene is provided. This method includes directing the flow of metallocene towards a junction, directing the flow of propylene towards the junction and maintaining a portion of the flow of metallocene separate from a portion of the flow propylene within a portion of the junction downstream of the flow of propylene into the junction. In another embodiment, a method of introducing a quantity of antifouling agent into a catalyst mixing system is provided. In this embodiment a portion of the antifouling agent is introduced at or downstream of a point of contact of a stream of propylene with a stream of catalyst. The antifouling agent may be a member, alone or in combination with other members, selected from Stadis 450 Conductivity Improver, Synperonic antifouling agent, and Pluronic antifouling agent.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: April 29, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Ronald Tharappel, Renaud Oreins, William Gauthier, David Attoe, Kevin McGovern, Michel Messiaen, David Rauscher, Kai Hortmann, Michel Daumerie
  • Publication number: 20140005035
    Abstract: Method employing a supported metallocene catalyst, composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn ??(1) or by the formula; B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Application
    Filed: August 28, 2013
    Publication date: January 2, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Patent number: 8563671
    Abstract: Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn??(1) or by the formula: B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?a are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: October 22, 2013
    Assignee: Fina Technology, Inc.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Publication number: 20130230718
    Abstract: The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
    Type: Application
    Filed: April 9, 2013
    Publication date: September 5, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Patent number: 8461276
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 11, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams
  • Patent number: 8436112
    Abstract: The invention is directed to a metallocene catalyst system comprising an inert silica support having pores with a peak pore volume of greater than about 0.115 mL/g at a pore diameter between about 250 Angstroms and about 350 Angstroms, and an alumoxane activator, with the metallocene being bound substantially throughout the support. The activator is grafted to the support in a solvent at a reflux temperature of toluene to obtain an aluminoxane on silica, and a metallocene component is added to make a MCS having a metallocene loading of about 2 wt %. This facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized that is at least about 20 percent higher than the catalytic activity for a metallocene loading of about 1 wt % where the activator is grafted to the support at room temperature.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: May 7, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Publication number: 20130102743
    Abstract: Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4.
    Type: Application
    Filed: July 12, 2011
    Publication date: April 25, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Tim J. Coffy, Michel Daumerie, Kenneth P. Blackmon, William Gauthier, Jun Tian, Joseph Thorman
  • Patent number: 8299188
    Abstract: Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn??(1) or by the formula: B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?a are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 30, 2012
    Assignee: Fina Technology, Inc.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Publication number: 20120264894
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 18, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams
  • Patent number: 8278403
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams