Patents by Inventor William Good

William Good has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11702222
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first TRUC and to the second TRUC to automatically deploy a RAT based on the combined status of the first TRUC and the second TRUC.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 18, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20230145311
    Abstract: A closing mechanism controller includes contactor operating logic that generates a software or firmware based closing mechanism command signal. The controller also includes hardware interlock circuitry that generates an interlock signal, the hardware interlock circuity being configured to compare an interlock signal to the software based closing mechanism command signal and to provide an enable signal to the closing mechanism when the interlock signal matches the closing mechanism command signal.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 11, 2023
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20230147395
    Abstract: A system includes a transformer rectifier unit (TRU) including a backfeed sense module. A contactor is operatively connected to the TRU for selectively supplying DC power to a DC bus from the TRU with the contactor closed and isolating the DC bus from the TRU with the contactor opened. A contactor driver is operatively connected to receive a signal from the backfeed sense module and to control opening and closing of the contactor based on the signal. The contactor driver is configured to open the contactor upon receipt of the signal indicative of backfeed detected in the TRU.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 11, 2023
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Stephen Ives
  • Patent number: 11641101
    Abstract: A method includes detecting an initial fault in a system and opening a contactor to isolate a load bus from the system for a window of time. During the window of time, the method includes detecting whether current flows from a generator of the system. If current flows from the generator of the system during the window of time, the method includes isolating the load bus from the generator. If current does not flow from the generator to the system during the window of time, the method includes isolating the load bus from all sources including the generator.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: May 2, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Joshua Berg, Jef William Good, John F. Defenbaugh
  • Patent number: 11616366
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A second AC bus is configured to supply power from a second generator. An AC essential bus tie contactor (AETC) selectively connects between an AC essential bus and the first and second AC busses. An AETC controller is connected to switch the AETC between a first state connecting the AC essential bus to the first AC bus and a second state connecting the AC essential bus to the second AC bus. A sensor system is configured to detect at least one of delta current and overcurrent in the AC essential bus and in at least one of the first AC bus and the second AC bus. The sensor system is operatively connected to the AETC controller for switching the AETC between the first state and the second state based on input from the sensor system.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: March 28, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Ives
  • Patent number: 11527976
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: December 13, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Patent number: 11383855
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A first voltage sensor is connected to sense voltage of the first DC bus. A second voltage sensor is connected to sense voltage of the second DC bus. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first voltage sensor and to the second voltage sensor to automatically deploy a RAT based on the combined status of the first voltage sensor and the second voltage sensor.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 12, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Patent number: 11300600
    Abstract: In accordance with one or more embodiments, a system is provided. The system includes feeders, sensors, and a controller. The feeders connect a panel to a generator and a load. The sensors are on the feeders. The controller receives sensor signals from the sensors. The controller evaluates the sensor signals to determine a fault location.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: April 12, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: John F. Defenbaugh, Jef William Good, Joshua Berg
  • Patent number: 11268989
    Abstract: A dual feeder circuit system for supplying electrical power can include one or more feeder groups, each feeder having a first wire and a second wire connected between a source terminal and a load terminal to carry the same electrical signal on both wires. The system can include one or more current transformers disposed on one or more of the feeders groups such that the current transformer is disposed around both the first wire and the second wire. The first wire can be passed directly through a first side of the current transformer to allow current to travel through the current transformer in a first direction, and the second wire can include a loop and be passed through a second side of the current transformer to allow current to travel through the current transformer in an second direction opposite the first direction.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: March 8, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Ernest Thompson, Dwight D. Schmitt, Jef William Good
  • Publication number: 20210320491
    Abstract: A method includes detecting an initial fault in a system and opening a contactor to isolate a load bus from the system for a window of time. During the window of time, the method includes detecting whether current flows from a generator of the system. If current flows from the generator of the system during the window of time, the method includes isolating the load bus from the generator. If current does not flow from the generator to the system during the window of time, the method includes isolating the load bus from all sources including the generator.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 14, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Joshua Berg, Jef William Good, John F. Defenbaugh
  • Patent number: 11133665
    Abstract: A direct current (DC) overvoltage monitoring and protection device includes an overvoltage sensor operably connected to an electrical power input line. The overvoltage sensor is configured to change state upon detection of a voltage over a preselected threshold. An overvoltage relay is operably connected to the overvoltage sensor. The overvoltage relay includes one or more relay switches configured to move between a first position and a second position when the voltage over the preselected threshold is detected. An independent relay power source is operably connected to the overvoltage relay to provide electrical power to the overvoltage relay, separate from the electrical power being monitored via the electrical power input line.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: September 28, 2021
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Francis C. Belisle, Jef William Good, George E. Wulf, Jr., Barry T. Drager, Kenneth C. Kramer, Chad Lukan, Kyle Elmer, Steven M. Quirk
  • Publication number: 20210292001
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first TRUC and to the second TRUC to automatically deploy a RAT based on the combined status of the first TRUC and the second TRUC.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20210297025
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Application
    Filed: May 10, 2021
    Publication date: September 23, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20210297024
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20210292000
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A first voltage sensor is connected to sense voltage of the first DC bus. A second voltage sensor is connected to sense voltage of the second DC bus. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first voltage sensor and to the second voltage sensor to automatically deploy a RAT based on the combined status of the first voltage sensor and the second voltage sensor.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20210293871
    Abstract: In accordance with one or more embodiments, a system is provided. The system includes feeders, sensors, and a controller. The feeders connect a panel to a generator and a load. The sensors are on the feeders. The controller receives sensor signals from the sensors. The controller evaluates the sensor signals to determine a fault location.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Inventors: John F. Defenbaugh, Jef William Good, Joshua Berg
  • Publication number: 20210288498
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A second AC bus is configured to supply power from a second generator. An AC essential bus tie contactor (AETC) selectively connects between an AC essential bus and the first and second AC busses. An AETC controller is connected to switch the AETC between a first state connecting the AC essential bus to the first AC bus and a second state connecting the AC essential bus to the second AC bus. A sensor system is configured to detect at least one of delta current and overcurrent in the AC essential bus and in at least one of the first AC bus and the second AC bus. The sensor system is operatively connected to the AETC controller for switching the AETC between the first state and the second state based on input from the sensor system.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Ives
  • Patent number: 11108349
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: August 31, 2021
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20200141982
    Abstract: A dual feeder circuit system for supplying electrical power can include one or more feeder groups, each feeder having a first wire and a second wire connected between a source terminal and a load terminal to carry the same electrical signal on both wires. The system can include one or more current transformers disposed on one or more of the feeders groups such that the current transformer is disposed around both the first wire and the second wire. The first wire can be passed directly through a first side of the current transformer to allow current to travel through the current transformer in a first direction, and the second wire can include a loop and be passed through a second side of the current transformer to allow current to travel through the current transformer in an second direction opposite the first direction.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 7, 2020
    Inventors: Ernest Thompson, Dwight D. Schmitt, Jef William Good
  • Publication number: 20200076184
    Abstract: A direct current (DC) overvoltage monitoring and protection device includes an overvoltage sensor operably connected to an electrical power input line. The overvoltage sensor is configured to change state upon detection of a voltage over a preselected threshold. An overvoltage relay is operably connected to the overvoltage sensor. The overvoltage relay includes one or more relay switches configured to move between a first position and a second position when the voltage over the preselected threshold is detected. An independent relay power source is operably connected to the overvoltage relay to provide electrical power to the overvoltage relay, separate from the electrical power being monitored via the electrical power input line.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: Francis C. Belisle, Jef William Good, George E. Wulf, JR., Barry T. Drager, Kenneth C. Kramer, Chad Lukan, Kyle Elmer, Steven M. Quirk