Patents by Inventor William Grossman

William Grossman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240086722
    Abstract: Systems and methods are provided for generating solutions to decision analysis problems. The systems include a processor configured to: receive input data relating to a decision analysis problem, the input data including various parameters, wherein one or more of the parameters are in conflict, generate a plurality of the solutions based on the input data, wherein each of the plurality of solutions are from distinct homotopy classes, approximate a Pareto front using a multi-objective evolutionary algorithm, the Pareto front representing a collection of the plurality of the solutions that are not inferior to others of the plurality of the solutions in view of an entirety of the parameters in the input data, generate a course of action (COA) menu presenting solution architypes based on the Pareto front using a topological clustering algorithm, and display the COA menu on a visual display device.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 14, 2024
    Applicant: General Dynamics Mission Systems, Inc.
    Inventors: Benjamin Strasser, Patrick Valentine Haggerty, William Steven Singleton, Adam Gerber, Melanie Grossman, Sandeep Rajdev, Sydney Matthys
  • Patent number: 11927955
    Abstract: The technology relates to assisting large self-driving vehicles, such as cargo vehicles, as they maneuver towards and/or park at a destination facility. This may include a given vehicle transitioning between different autonomous driving modes. Such a vehicles may be permitted to drive in a fully autonomous mode on certain roadways for the majority of a trip, but may need to change to a partially autonomous mode on other roadways or when entering or leaving a destination facility such as a warehouse, depot or service center. Large vehicles such as cargo truck may have limited room to maneuver in and park at the destination, which may also prevent operation in a fully autonomous mode. Here, information from the destination facility and/or a remote assistance service can be employed to aid in real-time semi-autonomous maneuvering.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: March 12, 2024
    Assignee: Waymo LLC
    Inventors: Vijaysai Patnaik, William Grossman
  • Patent number: 11927956
    Abstract: The technology relates to assisting large self-driving vehicles, such as cargo vehicles, as they maneuver towards and/or park at a destination facility. This may include a given vehicle transitioning between different autonomous driving modes. Such a vehicles may be permitted to drive in a fully autonomous mode on certain roadways for the majority of a trip, but may need to change to a partially autonomous mode on other roadways or when entering or leaving a destination facility such as a warehouse, depot or service center. Large vehicles such as cargo truck may have limited room to maneuver in and park at the destination, which may also prevent operation in a fully autonomous mode. Here, information from the destination facility and/or a remote assistance service can be employed to aid in real-time semi-autonomous maneuvering.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: March 12, 2024
    Assignee: Waymo LLC
    Inventors: Vijaysai Patnaik, William Grossman
  • Patent number: 11922362
    Abstract: The technology relates to cargo vehicles. National, regional and/or local regulations set requirements for operating cargo vehicles, including how to distribute and secure cargo, and how often the cargo should be inspected during a trip. However, such regulations have been focused on traditional human-driven vehicles. Aspects of the technology address various issues involved with securement and inspection of cargo before a trip, as well as monitoring during the trip so that corrective action may be taken as warranted. For instance, imagery and other sensor information may be used to enable proper securement of cargo before starting a trip. Onboard sensors along the vehicle monitor the cargo and securement devices/systems during the trip to identify issues as they arise. Such information is used by the onboard autonomous driving system (or a human driver) to take corrective action depending on the nature of the issue.
    Type: Grant
    Filed: January 6, 2023
    Date of Patent: March 5, 2024
    Assignee: Waymo LLC
    Inventors: Vijaysai Patnaik, William Grossman, Peter Strohm
  • Patent number: 11899466
    Abstract: The technology relates to autonomous vehicles for transporting cargo and/or people between locations. Distributed sensor arrangements may not be suitable for vehicles such as large trucks, busses or construction vehicles. Side view mirror assemblies are provided that include a sensor suite of different types of sensors, including LIDAR, radar, cameras, etc. Each side assembly is rigidly secured to the vehicle by a mounting element. The sensors within the assembly may be aligned or arranged relative to a common axis or physical point of the housing. This enables self-referenced calibration of all sensors in the housing. Vehicle-level calibration can also be performed between the sensors on the left and right sides of the vehicle. Each side view mirror assembly may include a conduit that provides one or more of power, data and cooling to the sensors in the housing.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: William Grossman, Benjamin Pitzer
  • Publication number: 20240025491
    Abstract: The technology relates to enhancing the operation of autonomous vehicles. Extendible sensors are deployed based on detected or predicted conditions around a vehicle while operating in a self-driving mode. When not needed, the sensors are fully retracted into the vehicle to reduce drag and increase fuel economy. When the onboard system determines that there is a need for a deployable sensor, such as to enhance the field of view of the perception system, the sensor is extended in a predetermined manner. The deployment may depend on one or more operating conditions and/or particular driving scenarios. These and other sensors of the vehicle may be protected with a rugged housing, for instance to protect against damage from the elements. And in other situations, deployable foils may extend from the vehicle's chassis to increase drag and enhance braking. This may be helpful for large trucks in steep descent situations.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 25, 2024
    Inventors: Vijaysai Patnaik, William Grossman
  • Patent number: 11852753
    Abstract: A sensor (e.g., an optical sensor) is disposed in an enclosure that separates it from an external environment. The enclosure includes an aperture comprising a transparent material. A laminate comprising a plurality of transparent films is coupled to the aperture such that the sensor has a field of view of the external environment through the transparent material of the aperture and the plurality of transparent films. The laminate includes an exposed transparent film that is exposed to the external environment and that is removable to expose an underlying film in the laminate when dirt, debris, or other obscuring material has collected on it. A laminate module that includes the laminate, a laminate sensor, and a peeling mechanism may be removably mounted on the aperture. The laminate sensor can sense the number of transparent films remaining in the laminate. The peeling mechanism can peel away individual transparent films in the laminate.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: December 26, 2023
    Assignee: Waymo LLC
    Inventors: William Grossman, Troy Scott Storz, Matthew Carroll
  • Patent number: 11822011
    Abstract: The technology relates to enhancing or extending the field of view of sensors for vehicles configured to operate in an autonomous driving mode. One or more mirrors are used to reflect or redirect beams emitted from onboard sensors that would otherwise be wasted, for instance due to obstruction by a portion of the vehicle or because they are emitted at high pitch angles to the side. The mirrors are also used to redirect incoming beams from the external environment toward one or more of the onboard sensors. Using mirrors for such redirection can reduce or eliminate blind spots around the vehicle. A calibration system may be employed to account for mirror movement due to vibration or wind drag. Each mirror may be a front surface mirror. The mirrors may be positioned on the vehicle body, on a faring, or extending from a sensor housing on the vehicle.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: November 21, 2023
    Assignee: Waymo LLC
    Inventors: Mingcheng Chen, Benjamin Pitzer, Pierre-Yves Droz, William Grossman
  • Patent number: 11801905
    Abstract: The technology relates to enhancing the operation of autonomous vehicles. Extendible sensors are deployed based on detected or predicted conditions around a vehicle while operating in a self-driving mode. When not needed, the sensors are fully retracted into the vehicle to reduce drag and increase fuel economy. When the onboard system determines that there is a need for a deployable sensor, such as to enhance the field of view of the perception system, the sensor is extended in a predetermined manner. The deployment may depend on one or more operating conditions and/or particular driving scenarios. These and other sensors of the vehicle may be protected with a rugged housing, for instance to protect against damage from the elements. And in other situations, deployable foils may extend from the vehicle's chassis to increase drag and enhance braking. This may be helpful for large trucks in steep descent situations.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: October 31, 2023
    Assignee: Waymo LLC
    Inventors: Vijaysai Patnaik, William Grossman
  • Publication number: 20230315107
    Abstract: A method includes identifying route data including a threshold arrival time for a route for an autonomous vehicle (AV) and calculating, based on the route data and a fuel-efficient speed value for each segment of the route, an estimated arrival time. Responsive to the estimated arrival time not meeting the threshold arrival time, the method includes identifying at least a subset of segments that each represent a candidate for speed increase, computing, for each segment in the subset and based on the fuel economy data, a correlation metric that indicates a correlation between a change in fuel economy and a change in speed for a corresponding segment in the subset, and increasing, for at least one segment from the subset and based on a respective correlation metric, a fuel-efficient speed value of the corresponding segment from the subset to provide a speed profile reflecting the increased fuel-efficient speed value.
    Type: Application
    Filed: April 3, 2023
    Publication date: October 5, 2023
    Inventors: William Grossman, Peter Strohm
  • Patent number: 11772719
    Abstract: The technology relates to enhancing the operation of autonomous vehicles. Extendible sensors are deployed based on detected or predicted conditions around a vehicle while operating in a self-driving mode. When not needed, the sensors are fully retracted into the vehicle to reduce drag and increase fuel economy. When the onboard system determines that there is a need for a deployable sensor, such as to enhance the field of view of the perception system, the sensor is extended in a predetermined manner. The deployment may depend on one or more operating conditions and/or particular driving scenarios. These and other sensors of the vehicle may be protected with a rugged housing, for instance to protect against damage from the elements. And in other situations, deployable foils may extend from the vehicle's chassis to increase drag and enhance braking. This may be helpful for large trucks in steep descent situations.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: October 3, 2023
    Assignee: Waymo LLC
    Inventors: Vijaysai Patnaik, William Grossman
  • Publication number: 20230234650
    Abstract: The technology relates to autonomous vehicles having hitched or towed trailers for transporting cargo and other items between locations. Aspects of the technology provide a smart hitch connection between the fifth-wheel of a tractor unit and the kingpin of a trailer. This avoids requiring a person to make physical pneumatic and electrical connections between the fifth-wheel and kingpin using external hoses and cables. Instead, the necessary connections are made internally, autonomously. For instance, the fifth-wheel may provide air pressure via one or more slots arranged on a connection surface, and the trailer is configured to receive the air pressure through one or more openings on a contact surface of the kingpin. An electrical connection section of the fifth-wheel may also provide electrical signals and/or power to an electrical contact interface of the kingpin. Rotational information about relative alignment of the trailer to the tractor unit may also be provided.
    Type: Application
    Filed: April 3, 2023
    Publication date: July 27, 2023
    Inventor: William Grossman
  • Publication number: 20230153745
    Abstract: The technology relates to cargo vehicles. National, regional and/or local regulations set requirements for operating cargo vehicles, including how to distribute and secure cargo, and how often the cargo should be inspected during a trip. However, such regulations have been focused on traditional human-driven vehicles. Aspects of the technology address various issues involved with securement and inspection of cargo before a trip, as well as monitoring during the trip so that corrective action may be taken as warranted. For instance, imagery and other sensor information may be used to enable proper securement of cargo before starting a trip. Onboard sensors along the vehicle monitor the cargo and securement devices/systems during the trip to identify issues as they arise. Such information is used by the onboard autonomous driving system (or a human driver) to take corrective action depending on the nature of the issue.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Inventors: Vijaysai Patnaik, William Grossman, Peter Strohm
  • Patent number: 11643154
    Abstract: The technology relates to autonomous vehicles having hitched or towed trailers for transporting cargo and other items between locations. Aspects of the technology provide a smart hitch connection between the fifth-wheel of a tractor unit and the kingpin of a trailer. This avoids requiring a person to make physical pneumatic and electrical connections between the fifth-wheel and kingpin using external hoses and cables. Instead, the necessary connections are made internally, autonomously. For instance, the fifth-wheel may provide air pressure via one or more slots arranged on a connection surface, and the trailer is configured to receive the air pressure through one or more openings on a contact surface of the kingpin. An electrical connection section of the fifth-wheel may also provide electrical signals and/or power to an electrical contact interface of the kingpin. Rotational information about relative alignment of the trailer to the tractor unit may also be provided.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: May 9, 2023
    Assignee: Waymo LLC
    Inventor: William Grossman
  • Patent number: 11619944
    Abstract: A method includes identifying route data including a threshold arrival time for a route for an autonomous vehicle (AV) and calculating, based on the route data and a fuel-efficient speed value for each segment of the route, an estimated arrival time. Responsive to the estimated arrival time not meeting the threshold arrival time, the method includes identifying at least a subset of segments that each represent a candidate for speed increase, computing, for each segment in the subset and based on the fuel economy data, a correlation metric that indicates a correlation between a change in fuel economy and a change in speed for a corresponding segment in the subset, and increasing, for at least one segment from the subset and based on a respective correlation metric, a fuel-efficient speed value of the corresponding segment from the subset to provide a speed profile reflecting the increased fuel-efficient speed value.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: April 4, 2023
    Assignee: Waymo LLC
    Inventors: William Grossman, Peter Strohm
  • Patent number: 11594037
    Abstract: Systems and methods for automated vehicle sensor calibration and verification are provided. One example method involves monitoring a vehicle using one or more external sensors of a vehicle calibration facility. The sensor data may be indicative of a relative position of the vehicle in the vehicle calibration facility. The method also involves causing the vehicle to navigate in an autonomous driving mode, based on the sensor data, from a current position of the vehicle to a first calibration position in the vehicle calibration facility. The method also involves causing a first sensor of the vehicle to perform a first calibration measurement while the vehicle is at the first calibration position. The method also involves calibrating the first sensor based on at least the first calibration measurement.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: February 28, 2023
    Assignee: Waymo LLC
    Inventors: William Grossman, Peter Strohm
  • Patent number: 11580484
    Abstract: The technology relates to cargo vehicles. National, regional and/or local regulations set requirements for operating cargo vehicles, including how to distribute and secure cargo, and how often the cargo should be inspected during a trip. However, such regulations have been focused on traditional human-driven vehicles. Aspects of the technology address various issues involved with securement and inspection of cargo before a trip, as well as monitoring during the trip so that corrective action may be taken as warranted. For instance, imagery and other sensor information may be used to enable proper securement of cargo before starting a trip. Onboard sensors along the vehicle monitor the cargo and securement devices/systems during the trip to identify issues as they arise. Such information is used by the onboard autonomous driving system (or a human driver) to take corrective action depending on the nature of the issue.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 14, 2023
    Assignee: Waymo LLC
    Inventors: Vijaysai Patnaik, William Grossman, Peter Strohm
  • Patent number: 11554821
    Abstract: The technology relates to autonomous vehicles having hitched or towed trailers for transporting cargo and other items between locations. Aspects of the technology provide a smart hitch connection between the fifth-wheel of a tractor unit and the kingpin of a trailer. This avoids requiring a person to make physical pneumatic and electrical connections between the fifth-wheel and kingpin using external hoses and cables. Instead, the necessary connections are made internally, autonomously. For instance, the fifth-wheel may provide air pressure via one or more slots arranged on a connection surface, and the trailer is configured to receive the air pressure through one or more openings on a contact surface of the kingpin. An electrical connection section of the fifth-wheel may also provide electrical signals and/or power to an electrical contact interface of the kingpin. Rotational information about relative alignment of the trailer to the tractor unit may also be provided.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: January 17, 2023
    Assignee: Waymo LLC
    Inventor: William Grossman
  • Publication number: 20220332378
    Abstract: The technology relates to enhancing the operation of autonomous vehicles. Extendible sensors are deployed based on detected or predicted conditions around a vehicle while operating in a self-driving mode. When not needed, the sensors are fully retracted into the vehicle to reduce drag and increase fuel economy. When the onboard system determines that there is a need for a deployable sensor, such as to enhance the field of view of the perception system, the sensor is extended in a predetermined manner. The deployment may depend on one or more operating conditions and/or particular driving scenarios. These and other sensors of the vehicle may be protected with a rugged housing, for instance to protect against damage from the elements. And in other situations, deployable foils may extend from the vehicle's chassis to increase drag and enhance braking. This may be helpful for large trucks in steep descent situations.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Inventors: Vijaysai Patnaik, William Grossman
  • Publication number: 20220317254
    Abstract: The technology relates to enhancing or extending the field of view of sensors for vehicles configured to operate in an autonomous driving mode. One or more mirrors are used to reflect or redirect beams emitted from onboard sensors that would otherwise be wasted, for instance due to obstruction by a portion of the vehicle or because they are emitted at high pitch angles to the side. The mirrors are also used to redirect incoming beams from the external environment toward one or more of the onboard sensors. Using mirrors for such redirection can reduce or eliminate blind spots around the vehicle. A calibration system may be employed to account for mirror movement due to vibration or wind drag. Each mirror may be a front surface mirror. The mirrors may be positioned on the vehicle body, on a faring, or extending from a sensor housing on the vehicle.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Mingcheng Chen, Benjamin Pitzer, Pierre-Yves Droz, William Grossman