Patents by Inventor William H. Clingman, Jr.

William H. Clingman, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5224776
    Abstract: A method and apparatus for determining the calorific value of a first combustible gas involves mixing the first combustible gas with a second combustible gas having a known calorific value and with a combustion supporting gas and burning the resulting mixture, detecting a property of the burning mixture indicative of whether the burning occurred at the stoichiometric point, adjusting the relative flow rates of the first and second combustible gases and the combustion supporting gas so that said burning occurs substantially at the stoichiometric point or at a selected offset from that point, and ascertaining the volume ratios of the gases at the adjusted flow rate to produce a value proportional to the overall calorific value of the mixture of the first and second combustible gases. Based on the foregoing, the contribution to the overall calorific value made by the second combustible gas having a known calorific value can be deleted to yield the calorific value of the first combustible gas.
    Type: Grant
    Filed: August 15, 1991
    Date of Patent: July 6, 1993
    Assignee: Precision Measurement, Inc.
    Inventors: William H. Clingman, Jr., Lyn R. Kennedy
  • Patent number: 5201581
    Abstract: The present invention is a method and apparatus for monitoring in real time the mass and energy flow rate of a gas through a pipeline. The invention determines the mass flow ratio of a pipeline gas flowing through a pipeline compared to sample gas tapped from the pipeline line when the volumetric flow of pipeline gas through the pipeline is measured by a linear flow meter. Sample gas tapped from the pipeline is flowed to a chamber having a section with a fixed volume until the pressure in the chamber section is substantially equal to the pipeline gas pressure. The sample gas is maintained at substantially the same temperature as the gas in the pipeline while the sample gas is in the chamber section. A timer measures the time interval for the sample gas to flow from the chamber section at a selected rate for a calculated pressure drop the selected rate being controlled by a flow controller. The mass flow ratio is computed using the measured time interval and a signal from the linear flow meter.
    Type: Grant
    Filed: November 18, 1991
    Date of Patent: April 13, 1993
    Assignee: Badger Meter, Inc.
    Inventors: William H. Vander Heyden, William H. Clingman, Jr.
  • Patent number: 5115687
    Abstract: Disclosed is a method and apparatus for taking a constantly proportional flowing sample of gas flowing through a main line having a first flow restriction therein. According to the teachings of the present of invention, such an apparatus includes a sample line connected to the main line so as to draw a flowing sample of gas from the main line at a point upstream from the first flow restriction; a second flow restriction in the sample line, the second flow restriction being very small relative to the main and sample lines and the first flow restriction; and structure that equalizes the pressure downstream of the first and second flow restrictions.
    Type: Grant
    Filed: March 5, 1991
    Date of Patent: May 26, 1992
    Assignee: Badger Meter, Inc.
    Inventors: William H. Clingman, Jr., Lyn R. Kennedy
  • Patent number: 5016482
    Abstract: Disclosed is a method for taking a constantly proportional flowing sample of gas flowing through a line and which is part of measuring and determining the total energy flow, that is, BTUs per minute, of combustible gas flowing through a line such as a pipeline. One method includes taking a continuous sample of the gas flowing through the line which sample is a constant proportion of the gas flowing through the line, and burning the sample in equipment which supplies air to the sample in an amount which maximizes its burning temperature. The flow rate of air which produces the maximum burning temperature of the sample is a flow rate which is directly proportional to the rate of energy flow in the main pipeline. Alternately, the flow rate of air which produces a stoichiometric mixture is directly proportional to the rate of energy flow in the main pipeline.
    Type: Grant
    Filed: August 16, 1989
    Date of Patent: May 21, 1991
    Inventors: William H. Clingman, Jr., Lyn R. Kennedy
  • Patent number: 4396299
    Abstract: Disclosed are methods and apparatus for measuring and determining the total energy flow, that is, BTUs per minute, of combustible gas flowing through a line such as a pipeline. One method includes taking a continuous sample of the gas flowing through the line which sample is a constant proportion of the gas flowing through the line, and burning the sample in equipment which supplies air to the sample in an amount which maximizes its burning temperature. The flow rate of air which produces the maximum burning temperature of the sample is a flow rate which is directly proportional to the rate of energy flow in the main pipeline. Alternately, the flow rate of air which produces a stoichiometric mixture is directly proportional to the rate of energy flow in the main pipeline. Still further, if an excess of air is flowed to the flame, the amount of excess unconsumed oxygen is also a function of the rate of energy flow in the main pipeline. One or another of these parameters is measured.
    Type: Grant
    Filed: June 10, 1981
    Date of Patent: August 2, 1983
    Assignee: Precision Machine Products, Inc.
    Inventors: William H. Clingman, Jr., Lyn R. Kennedy
  • Patent number: 4125018
    Abstract: Method of and means for accurately measuring the calorific value of combustible gases wherein a mixture of combustible gas and combustion-supporting gas is burned in a pair of flames, the temperatures of the burned gases in both flames being monitored and the volume ratios of the combustion-supporting gas to the combustible gas fed to both burners being adjusted so as to maintain the average of said temperatures at substantially maximum; the volume ratio of said gases which produces said maximum average temperatures varying substantially directly with the calorific value of said combustible gas; the aforesaid calorific value being proportional to said volume ratio of said gases which maximizes said average temperatures; the flow rates of said gases being measured by a single flow sensing system, preferably, of the turbine flowmeter types, or the volumetric flow rate of said combustion-supporting gas being maintained at a constant value while the volumetric flow rate of said combustible gas is being measured;
    Type: Grant
    Filed: April 27, 1977
    Date of Patent: November 14, 1978
    Assignee: Precision Machine Products, Inc.
    Inventor: William H. Clingman, Jr.
  • Patent number: 4125123
    Abstract: Method of and means for accurately measuring the calorific value of combustible gases wherein a mixture of combustible gas and combustion-supporting gas is burned in a pair of flames, the temperatures of the burned gases in both flames being monitored and the volume ratios of the combustion-supporting gas to the combustible gas fed to both burners being adjusted so as to maintain the average of said temperatures at substantially maximum; the volume ratio of said gases which produces said maximum average temperatures varying substantially directly with the calorific value of said combustible gas; the aforesaid calorific value being proportional to said volume ratio of said gases which maximizes said average temperatures; the flow rates of said gases being measured by a single flow sensing system, preferably, of the turbine flowmeter types, or the volumetric flow rate of said combustion-supporting gas being maintained at a constant value while the volumetric flow rate of said combustible gas is being measured;
    Type: Grant
    Filed: August 12, 1977
    Date of Patent: November 14, 1978
    Assignee: Precision Machine Products, Inc.
    Inventor: William H. Clingman, Jr.
  • Patent number: 4062236
    Abstract: Method of and means for accurately measuring the calorific value of combustible gases wherein a mixture of combustible gas and combustion-supporting gas is burned in a pair of flames, the temperatures of the burned gases in both flames being monitored and the volume ratios of the combustion-supporting gas to the combustible gas fed to both burners being adjusted so as to maintain the average of said temperatures at substantially maximum; the volume ratio of said gases which produces said maximum average temperatures varying substantially directly with the calorific value of said combustible gas; the aforesaid calorific value being proportional to said volume ratio of said gases which maximizes said average temperatures; the flow rates of said gases being measured by a single flow sensing system, preferably, of the turbine flowmeter types, or the volumetric flow rate of said combustion-supporting gas being maintained at a constant value while the volumetric flow rate of said combustible gas is being measured;
    Type: Grant
    Filed: May 3, 1976
    Date of Patent: December 13, 1977
    Assignee: Precision Machine Products, Inc.
    Inventor: William H. Clingman, Jr.
  • Patent number: RE35639
    Abstract: The present invention is a method and apparatus for monitoring in real time the mass and energy flow rate of a gas through a pipeline. The invention determines the mass flow ratio of a pipeline gas flowing through a pipeline compared to sample gas tapped from the pipeline line when the volumetric flow of pipeline gas through the pipeline is measured by a linear flow meter. Sample gas tapped from the pipeline is flowed to a chamber having a section with a fixed volume until the pressure in the chamber section is substantially equal to the pipeline gas pressure. The sample gas is maintained at substantially the same temperature as the gas in the pipeline while the sample gas is in the chamber section. A timer measures the time interval for the sample gas to flow from the chamber section at a selected rate for a calculated pressure drop the selected rate being controlled by a flow controller. The mass flow ratio is computed using the measured time interval and a signal from the linear flow meter.
    Type: Grant
    Filed: April 11, 1995
    Date of Patent: October 21, 1997
    Assignee: Badger Meter, Inc.
    Inventors: William H. Vander Heyden, William H. Clingman, Jr., deceased