Patents by Inventor William H. Markle

William H. Markle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9814398
    Abstract: An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises a method of measuring a hemodynamic parameter (e.g., arterial blood pressure) by applanating or compressing portions of tissue proximate to the blood vessel of concern until a desired condition is achieved, and then measuring the hemodynamic parameter. Such applanation effectively mitigates transfer and other losses created by the tissue proximate to the blood vessel, thereby facilitating accurate and robust tonometric measurement. An algorithm adapted to maintain optimal levels of applanation is also described. Methods and apparatus for scaling such hemodynamic parameter measurements based on subject physiology, and providing treatment to the subject based on the measured parameters, are also disclosed.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: November 14, 2017
    Assignee: Tensys Medical, Inc.
    Inventors: Stuart L. Gallant, Gregory I. Voss, William H. Markle
  • Patent number: 9757057
    Abstract: Disclosed are embodiments that relate to the deployment of a glucose sensor comprising an optical fiber into a physiological fluid, wherein the optical fiber has disposed along a distal region thereof a chemical indicator system comprising a fluorophore and a glucose binding moiety immobilized within a hydrogel, wherein the components of the chemical indicator system are in a dry state before deployment. Also disclosed is a one-point in vivo calibration of the chemical indicator system based on an independently measured glucose concentration.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: September 12, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Stuart L. Gallant, William H. Markle, Manouchehr Goharlaee
  • Publication number: 20150196204
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises apparatus adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an alignment apparatus which is separable from an adjustable fixture. The alignment apparatus moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. Methods for positioning the alignment apparatus and sensor, correcting for hydrostatic pressure effects, and providing treatment to the subject are also disclosed.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 16, 2015
    Inventors: Stephen R. Hessel, Simon E. Finburgh, Russell D. Hempstead, Mark W. Perona, Ronald J. Vidischak, Gregory I. Voss, Ronald S Conero, William H. Markle
  • Patent number: 8979790
    Abstract: A method for monitoring blood glucose concentration in a patient in need thereof is disclosed. The method comprises deploying an equilibrium glucose sensor within interstitial fluid in the patient in need and coupling the equilibrium glucose sensor to a monitor configured to detect a signal and configured to display the blood glucose concentration.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Medtronic Minimed, Inc.
    Inventors: William H. Markle, David R. Markle
  • Publication number: 20140163399
    Abstract: An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises a method of measuring a hemodynamic parameter (e.g., arterial blood pressure) by applanating or compressing portions of tissue proximate to the blood vessel of concern until a desired condition is achieved, and then measuring the hemodynamic parameter. Such applanation effectively mitigates transfer and other losses created by the tissue proximate to the blood vessel, thereby facilitating accurate and robust tonometric measurement. An algorithm adapted to maintain optimal levels of applanation is also described. Methods and apparatus for scaling such hemodynamic parameter measurements based on subject physiology, and providing treatment to the subject based on the measured parameters, are also disclosed.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Applicant: Tensys Medical, Inc.
    Inventors: Stuart L. Gallant, Gregory I. Voss, William H. Markle
  • Publication number: 20140128694
    Abstract: Disclosed are embodiments that relate to the deployment of a glucose sensor comprising an optical fiber into a physiological fluid, wherein the optical fiber has disposed along a distal region thereof a chemical indicator system comprising a fluorophore and a glucose binding moiety immobilized within a hydrogel, wherein the components of the chemical indicator system are in a dry state before deployment. Also disclosed is a one-point in vivo calibration of the chemical indicator system based on an independently measured glucose concentration.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: Glumetrics, Inc.
    Inventors: Stuart L. Gallant, William H. Markle, Mano Goharla'ee
  • Publication number: 20140058223
    Abstract: The present invention relates to a sensor for percutaneous insertion and intravascular residence without an indwelling cannula. In preferred embodiments, a glucose sensor is inserted into a blood vessel using a removable cannula. After the cannula is removed, the glucose sensor remains within the blood vessel by itself and forms a seal with the patient's tissue.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 27, 2014
    Applicant: Glumetrics, Inc.
    Inventors: David R. Markle, William H. Markle
  • Publication number: 20140018646
    Abstract: A method for achieving tight glycemic control in a patient in need thereof is disclosed. The method comprises deploying an equilibrium glucose sensor within a blood vessel in the patient, coupling the sensor to a monitor that displays the blood glucose concentration, and administering a blood glucose regulator when the blood glucose concentration varies outside of the predetermined concentration range. The blood glucose regulator is administered in an amount sufficient to return the blood glucose concentration to within the predetermined concentration range, thereby achieving tight glycemic control.
    Type: Application
    Filed: September 11, 2013
    Publication date: January 16, 2014
    Applicant: Glumetrics, Inc.
    Inventors: William H. Markle, David R. Markle
  • Patent number: 8597195
    Abstract: An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises a method of measuring a hemodynamic parameter (e.g., arterial blood pressure) by applanating or compressing portions of tissue proximate to the blood vessel of concern until a desired condition is achieved, and then measuring the hemodynamic parameter. Such applanation effectively mitigates transfer and other losses created by the tissue proximate to the blood vessel, thereby facilitating accurate and robust tonometric measurement. An algorithm adapted to maintain optimal levels of applanation is also described. Methods and apparatus for scaling such hemodynamic parameter measurements based on subject physiology, and providing treatment to the subject based on the measured parameters, are also disclosed.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: December 3, 2013
    Assignee: Tensys Medical, Inc.
    Inventors: Stuart L. Gallant, Gregory I. Voss, William H. Markle
  • Patent number: 8535262
    Abstract: A method for achieving tight glycemic control in a patient in need thereof is disclosed. The method comprises deploying an equilibrium glucose sensor within a blood vessel in the patient, coupling the sensor to a monitor that displays the blood glucose concentration, and administering a blood glucose regulator when the blood glucose concentration varies outside of the predetermined concentration range. The blood glucose regulator is administered in an amount sufficient to return the blood glucose concentration to within the predetermined concentration range, thereby achieving tight glycemic control.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 17, 2013
    Assignee: Glumetrics, Inc.
    Inventors: William H. Markle, David R. Markle
  • Patent number: 8512245
    Abstract: The present invention relates to a sensor for percutaneous insertion and intravascular residence without an indwelling cannula. In preferred embodiments, a glucose sensor is inserted into a blood vessel using a removable cannula. After the cannula is removed, the glucose sensor remains within the blood vessel by itself and forms a seal with the patient's tissue.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 20, 2013
    Assignee: Glumetrics, Inc.
    Inventors: David R. Markle, William H. Markle
  • Publication number: 20120116191
    Abstract: A method for achieving tight glycemic control in a patient in need thereof is disclosed. The method comprises deploying an equilibrium glucose sensor within a blood vessel in the patient, coupling the sensor to a monitor that displays the blood glucose concentration, and administering a blood glucose regulator when the blood glucose concentration varies outside of the predetermined concentration range. The blood glucose regulator is administered in an amount sufficient to return the blood glucose concentration to within the predetermined concentration range, thereby achieving tight glycemic control.
    Type: Application
    Filed: December 9, 2011
    Publication date: May 10, 2012
    Applicant: GLUMETRICS, INC.
    Inventors: William H. Markle, David R. Markle
  • Patent number: 8088097
    Abstract: A method for achieving tight glycemic control in a patient in need thereof is disclosed. The method comprises deploying an equilibrium glucose sensor within a blood vessel in the patient, coupling the sensor to a monitor that displays the blood glucose concentration, and administering a blood glucose regulator when the blood glucose concentration varies outside of the predetermined concentration range. The blood glucose regulator is administered in an amount sufficient to return the blood glucose concentration to within the predetermined concentration range, thereby achieving tight glycemic control.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: January 3, 2012
    Assignee: Glumetrics, Inc.
    Inventors: William H. Markle, David R. Markle
  • Publication number: 20110166458
    Abstract: An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises a method of measuring a hemodynamic parameter (e.g., arterial blood pressure) by applanating or compressing portions of tissue proximate to the blood vessel of concern until a desired condition is achieved, and then measuring the hemodynamic parameter. Such applanation effectively mitigates transfer and other losses created by the tissue proximate to the blood vessel, thereby facilitating accurate and robust tonometric measurement. An algorithm adapted to maintain optimal levels of applanation is also described. Methods and apparatus for scaling such hemodynamic parameter measurements based on subject physiology, and providing treatment to the subject based on the measured parameters, are also disclosed.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 7, 2011
    Inventors: Stuart L. Gallant, Gregory I. Voss, William H. Markle
  • Patent number: 7867170
    Abstract: An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises a method of measuring a hemodynamic parameter (e.g., arterial blood pressure) by applanating or compressing portions of tissue proximate to the blood vessel of concern until a desired condition is achieved, and then measuring the hemodynamic parameter. Such applanation effectively mitigates transfer and other losses created by the tissue proximate to the blood vessel, thereby facilitating accurate and robust tonometric measurement. An algorithm adapted to maintain optimal levels of applanation is also described. Methods and apparatus for scaling such hemodynamic parameter measurements based on subject physiology, and providing treatment to the subject based on the measured parameters, are also disclosed.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: January 11, 2011
    Assignee: Tensys Medical, Inc.
    Inventors: Stuart L. Gallant, Gregory I. Voss, William H. Markle
  • Publication number: 20090264719
    Abstract: The present invention relates to a sensor for percutaneous insertion and intravascular residence without an indwelling cannula. In preferred embodiments, a glucose sensor is inserted into a blood vessel using a removable cannula. After the cannula is removed, the glucose sensor remains within the blood vessel by itself and forms a seal with the patient's tissue.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 22, 2009
    Applicant: Glumetrics, Inc.
    Inventors: David R. Markle, William H. Markle
  • Publication number: 20090177143
    Abstract: A method for achieving tight glycemic control in a patient in need thereof is disclosed. The method comprises deploying an equilibrium glucose sensor within a blood vessel in the patient, coupling the sensor to a monitor that displays the blood glucose concentration, and administering a blood glucose regulator when the blood glucose concentration varies outside of the predetermined concentration range. The blood glucose regulator is administered in an amount sufficient to return the blood glucose concentration to within the predetermined concentration range, thereby achieving tight glycemic control.
    Type: Application
    Filed: November 20, 2008
    Publication date: July 9, 2009
    Inventors: William H. Markle, David R. Markle
  • Publication number: 20040210143
    Abstract: An improved method and apparatus for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises a method of measuring a hemodynamic parameter (e.g., arterial blood pressure) by applanating or compressing portions of tissue proximate to the blood vessel of concern until a desired condition is achieved, and then measuring the hemodynamic parameter. Such applanation effectively mitigates transfer and other losses created by the tissue proximate to the blood vessel, thereby facilitating accurate and robust tonometric measurement. An algorithm adapted to maintain optimal levels of applanation is also described. Methods and apparatus for scaling such hemodynamic parameter measurements based on subject physiology, and providing treatment to the subject based on the measured parameters, are also disclosed.
    Type: Application
    Filed: May 3, 2004
    Publication date: October 21, 2004
    Inventors: Stuart L. Gallant, Gregory I. Voss, William H. Markle
  • Publication number: 20040073123
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises apparatus adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an alignment apparatus which is separable from an adjustable fixture. The alignment apparatus moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. Methods for positioning the alignment apparatus and sensor, correcting for hydrostatic pressure effects, and providing treatment to the subject are also disclosed.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 15, 2004
    Inventors: Stephen R. Hessel, Simon E. Finburgh, Russell D. Hempstead, Mark W. Perona, Ronald J. Vidischak, Gregory I. Voss, Ronald S. Conero, William H. Markle
  • Patent number: 6705990
    Abstract: An improved method and apparatus for monitoring a plurality of physiologic parameters associated with a living subject. In one aspect, the invention comprises a monitoring apparatus capable of non-invasively and continuously monitoring the blood pressure, heart rate (ECG), and weight of the subject. The apparatus further includes a display, input device, and one or more communications links such that data and other information may be communicated between the apparatus and one or more remote locations. In one exemplary embodiment, the apparatus comprises a portable monitoring station disposed in the subject's home, which is kept in communication with a remote medical facility via a wireless interface and PSTN or data network. Two-way communications of monitored data, video, audio, and other types of information is provided to facilitate remote care of the subject, and obviate the need for an in-home caregiver or frequent trips to the medical facility.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: March 16, 2004
    Assignee: Tensys Medical, Inc.
    Inventors: Stuart L. Gallant, William H. Markle