Patents by Inventor William H. Park

William H. Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968774
    Abstract: According to some embodiments, an electrostatic particle accelerator may include an assembly having a motor and support plate; an acceleration tube; one or more stage assemblies each having an alternator coupled to a common drive shaft, a power supply coupled to one of the plurality of electrodes, and an opening to receive a portion of the acceleration tube; a pressure vessel configured to enclose the acceleration tube when the pressure vessel is fastened to the support plate; and a circulator configured to pump high pressure gas into the pressure vessel. The acceleration tube can include an ion source, an extraction assembly, and a plurality of tube segments each having a plurality of electrodes and one or more power connectors attached to one of the electrodes.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: April 23, 2024
    Assignee: Neutron Therapeutics LLC
    Inventors: William H. Park, Jr., Theodore H. Smick, Geoffrey Ryding, Ronald Horner
  • Publication number: 20230208130
    Abstract: An over-voltage protection system for an accelerator can include: a plurality of DC power supplies configured to provide a plurality of voltage levels up to a desired voltage level; and an acceleration tube electrically connected to the plurality of DC power supplies and configured to accelerate a charged particle. The acceleration tube can include a plurality of stages. Each stage can include a plurality of electrodes and a plurality of varistors configured to discharge energy in response to an overvoltage event. One electrode of the plurality of electrodes can be electrically coupled to a voltage level of the plurality of voltage levels. The plurality of electrodes and the plurality of varistors can be electrically coupled to each other and arranged in an alternating fashion.
    Type: Application
    Filed: May 12, 2021
    Publication date: June 29, 2023
    Applicant: Neutron Therapeutics Inc.
    Inventors: Tyler R. Wills, William H. Park
  • Patent number: 11589452
    Abstract: The present disclosures relates to an ion beam assembly where a relatively small deflection angle (approximately 15° from the center of the beam line) is used in conjunction with two beam dumps located on either side of the beam. In some embodiments, the combination of the two beam dumps and the magnet assembly can provide an ion beam filter. In some embodiments, the resulting system provides a smaller, safer and more reliable ion beam. In some embodiments, the ion beam can be a proton beam.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 21, 2023
    Assignee: Neutron Therapeutics, Inc.
    Inventors: Geoffrey Ryding, Takao Sakase, William H. Park, Theodore H. Smick
  • Patent number: 11553584
    Abstract: Design and making methods of a neutrons generating target are described. In some embodiments, a surface of a target substrate can be modified to form one or more surface features. In some embodiments, a neutron source layer can be disposed on the surface of the target substrate. In some embodiments, the neutron source layer and the target substrate can be heated to an elevated temperature to form a bond between the two. In some embodiments, the surface modification of the target substrate can reduce blistering and material exfoliation in the target. The target can be used in boron neutron capture therapy.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: January 10, 2023
    Assignee: Neutron Therapeutics, Inc.
    Inventors: William H. Park, Jr., Mark Lambert, Joseph Gillespie, Noah Smick, Takao Sakase
  • Publication number: 20210272716
    Abstract: Apparatuses and methods for producing neutrons for applications such as boron neutron capture therapy (BNCT) are described. An apparatus can include a rotary fixture with a coolant inlet and a coolant outlet, and a plurality of neutron-producing segments. Each neutron-producing segment of the plurality of neutron-producing segments is removably coupled to the rotary fixture, and includes a substrate having a coolant channel circuit defined therein and a solid neutron source layer disposed thereon. The coolant channel circuits are in fluid communication with the coolant inlet and the coolant outlet.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 2, 2021
    Applicant: Neutron Therapeutics Inc.
    Inventors: William H. Park, Jr., Steven P. Konish, Theodore H. Smick, Takao Sakase
  • Patent number: 11024437
    Abstract: Apparatuses and methods for producing neutrons for applications such as boron neutron capture therapy (BNCT) are described. An apparatus can include a rotary fixture with a coolant inlet and a coolant outlet, and a plurality of neutron-producing segments. Each neutron-producing segment of the plurality of neutron-producing segments is removably coupled to the rotary fixture, and includes a substrate having a coolant channel circuit defined therein and a solid neutron source layer disposed thereon. The coolant channel circuits are in fluid communication with the coolant inlet and the coolant outlet.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: June 1, 2021
    Assignee: Neutron Therapeutics Inc.
    Inventors: William H. Park, Jr., Steven P. Konish, Theodore H. Smick, Takao Sakase
  • Publication number: 20210120660
    Abstract: According to some embodiments, an electrostatic particle accelerator may include an assembly having a motor and support plate; an acceleration tube; one or more stage assemblies each having an alternator coupled to a common drive shaft, a power supply coupled to one of the plurality of electrodes, and an opening to receive a portion of the acceleration tube; a pressure vessel configured to enclose the acceleration tube when the pressure vessel is fastened to the support plate; and a circulator configured to pump high pressure gas into the pressure vessel. The acceleration tube can include an ion source, an extraction assembly, and a plurality of tube segments each having a plurality of electrodes and one or more power connectors attached to one of the electrodes.
    Type: Application
    Filed: April 19, 2019
    Publication date: April 22, 2021
    Applicant: Neutron Therapeutics, Inc.
    Inventors: William H. Park, JR., Theodore H. Smick, Geoffrey Ryding, Ronald Horner
  • Publication number: 20200196428
    Abstract: The present disclosures relates to an ion beam assembly where a relatively small deflection angle (approximately 15° from the center of the beam line) is used in conjunction with two beam dumps located on either side of the beam. In some embodiments, the combination of the two beam dumps and the magnet assembly can provide an ion beam filter. In some embodiments, the resulting system provides a smaller, safer and more reliable ion beam. In some embodiments, the ion beam can be a proton beam.
    Type: Application
    Filed: May 5, 2017
    Publication date: June 18, 2020
    Applicant: Neutron Therapeutics, Inc.
    Inventors: Geoffrey RYDING, Takao SAKASE, William H. PARK, Theodore H. SMICK
  • Publication number: 20200037430
    Abstract: Design and making methods of a neutrons generating target are described. In some embodiments, a surface of a target substrate can be modified to form one or more surface features. In some embodiments, a neutron source layer can be disposed on the surface of the target substrate. In some embodiments, the neutron source layer and the target substrate can be heated to an elevated temperature to form a bond between the two. In some embodiments, the surface modification of the target substrate can reduce blistering and material exfoliation in the target. The target can be used in boron neutron capture therapy.
    Type: Application
    Filed: October 8, 2019
    Publication date: January 30, 2020
    Applicant: Neutron Therapeutics, Inc.
    Inventors: William H. Park, JR., Mark Lambert, Joseph Gillespie, Noah Smick, Takao Sakase
  • Patent number: 10462893
    Abstract: Design and making methods of a neutrons generating target are described. In some embodiments, a surface of a target substrate can be modified to form one or more surface features. In some embodiments, a neutron source layer can be disposed on the surface of the target substrate. In some embodiments, the neutron source layer and the target substrate can be heated to an elevated temperature to form a bond between the two. In some embodiments, the surface modification of the target substrate can reduce blistering and material exfoliation in the target. The target can be used in boron neutron capture therapy.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 29, 2019
    Assignee: NEUTRON THERAPEUTICS, INC.
    Inventors: William H. Park, Jr., Mark Lambert, Joseph Gillespie, Noah Smick, Takao Sakase
  • Publication number: 20180352643
    Abstract: Design and making methods of a neutrons generating target are described. In some embodiments, a surface of a target substrate can be modified to form one or more surface features. In some embodiments, a neutron source layer can be disposed on the surface of the target substrate. In some embodiments, the neutron source layer and the target substrate can be heated to an elevated temperature to form a bond between the two. In some embodiments, the surface modification of the target substrate can reduce blistering and material exfoliation in the target. The target can be used in boron neutron capture therapy.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 6, 2018
    Inventors: William H. Park, JR., Mark Lambert, Joseph Gillespie, Noah Smick, Takao Sakase
  • Publication number: 20170062086
    Abstract: Apparatuses and methods for producing neutrons for applications such as boron neutron capture therapy (BNCT) are described. An apparatus can include a rotary fixture with a coolant inlet and a coolant outlet, and a plurality of neutron-producing segments. Each neutron-producing segment of the plurality of neutron-producing segments is removably coupled to the rotary fixture, and includes a substrate having a coolant channel circuit defined therein and a solid neutron source layer disposed thereon. The coolant channel circuits are in fluid communication with the coolant inlet and the coolant outlet.
    Type: Application
    Filed: May 5, 2016
    Publication date: March 2, 2017
    Inventors: William H. PARK, JR., Steven P. KONISH, Theodore H. SMICK, Takao SAKASE
  • Publication number: 20150262863
    Abstract: A compact electromagnetic system is disclosed that is capable of scanning an ion beam in two orthogonal directions (e.g., for semiconductor doping or hydrogen induced exfoliation). In particular, according to embodiments of the compact electromagnetic system, the steel yoke, pole pieces, and excitation coils for both the X and Y axis have been integrated into a common structure.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 17, 2015
    Inventors: William H. Park, Geoffrey Ryding
  • Patent number: 8558486
    Abstract: A d.c. charged particle accelerator comprises accelerator electrodes separated by insulating spacers defining acceleration gaps between adjacent pairs of electrodes. Individually regulated gap voltages are applied across each adjacent pair of accelerator electrodes. In embodiments, the individually regulated gap voltages are generated by electrically isolated alternators mounted on a common rotor shaft driven by an electric motor. Alternating power outputs from the alternators provide inputs to individual regulated d.c. power supplies to generate the gap voltages. The power supplies are electrically isolated and have outputs connected in series across successive pairs of accelerator electrodes. The described embodiment enables an ion beam to be accelerated to high energies and high beam currents, with good accelerator stability.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: October 15, 2013
    Assignee: GTAT Corporation
    Inventors: Theodore H. Smick, Geoffrey Ryding, William H. Park, Ronald Horner
  • Patent number: 8426829
    Abstract: An ion implanter has an implant wheel with a plurality of wafer carriers distributed about a periphery of the wheel. Each wafer carrier has a heat sink for removing heat from a wafer on the carrier during the implant process by thermal contact between the wafer and the heat sink. The wafer carriers have wafer retaining fences formed as cylindrical rollers with axes in the respective wafer support planes of the wafer carriers. The cylindrical surfaces of the rollers provide wafer abutment surfaces which can move transversely to the wafer support surfaces so that no transverse loading is applied by the fences to wafer edges as the wafer is pushed against the heat sink by centrifugal force. The wafer support surfaces comprise layers of elastomeric material and the movable abutment surfaces of the fences allow even thermal coupling with the heat sink over the whole area of the wafer.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 23, 2013
    Assignee: GTAT Corporation
    Inventors: William H Leavitt, Theodore H Smick, Joseph Daniel Gillespie, William H Park, Paul Eide, Drew Arnold, Geoffrey Ryding
  • Patent number: 8324592
    Abstract: Multiple control electrodes are provided asymmetrically within the plasma chamber of an ion source at respective positions along the length of the plasma chamber. Biasing the control electrodes selectively can selectively enhance the ion extraction current at adjacent positions along the length of the extraction slit. A method of generating an ion beam is disclosed in which the strengths of the transverse electric fields at different locations along the length of the plasma chamber are controlled to modify the ion beam linear current density profile along the length of the slit. The method is used for controlling the uniformity of a ribbon beam.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 4, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Geoffrey Ryding, Drew Arnold, William H. Park, Ronald Horner
  • Publication number: 20120146554
    Abstract: A d. c. charged particle accelerator comprises accelerator electrodes separated by insulating spacers defining acceleration gaps between adjacent pairs of electrodes. Individually regulated gap voltages are applied across each adjacent pair of accelerator electrodes. In embodiments, the individually regulated gap voltages are generated by electrically isolated alternators mounted on a common rotor shaft driven by an electric motor. Alternating power outputs from the alternators provide inputs to individual regulated d. c. power supplies to generate the gap voltages. The power supplies are electrically isolated and have outputs connected in series across successive pairs of accelerator electrodes. The described embodiment enables an ion beam to be accelerated to high energies and high beam currents, with good accelerator stability.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Theodore H. Smick, Geoffrey Ryding, William H. Park, Ronald Horner
  • Publication number: 20120104273
    Abstract: Multiple control electrodes are provided asymmetrically within the plasma chamber of an ion source at respective positions along the length of the plasma chamber. Biasing the control electrodes selectively can selectively enhance the ion extraction current at adjacent positions along the length of the extraction slit. A method of generating an ion beam is disclosed in which the strengths of the transverse electric fields at different locations along the length of the plasma chamber are controlled to modify the ion beam linear current density profile along the length of the slit. The method is used for controlling the uniformity of a ribbon beam.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Geoffrey Ryding, Drew Arnold, William H. Park, Ronald Horner
  • Patent number: 8089050
    Abstract: A ribbon-shaped ion beam is modified using multiple coil structures on a pair of opposed ferromagnetic bars. The coil structures comprise continuous windings which have predetermined variations along the length of the bar of turns per unit length. In an example, one coil structure may have uniform turns per unit length along the bar, so that energizing the coil structures forms a magnetic field component extending across the gap between the bars with a quadrupole intensity distribution. A second coil structure may have turns per unit length varying to produce a hexapole magnetic field intensity distribution. Further coil structures may be provided to produce octopole and decapole magnetic field distributions. The coil structures may be energized to produce magnetic fields parallel to the bars which vary along the length of the bars, to twist or flatten the ribbon-shaped beam.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: January 3, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Kenneth Harry Purser, William H. Park
  • Patent number: 8058626
    Abstract: A ribbon-shaped ion beam having an elongate cross-section normal to a beam direction is modified by generating, at a predetermined position along the ribbon-shaped beam, a magnetic field extending in an x-direction along an x-axis. The x-direction magnetic field has a non-uniform intensity which is a desired function of x.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: November 15, 2011
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Kenneth Harry Purser, William H. Park