Patents by Inventor William H. Weedon, III

William H. Weedon, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8174449
    Abstract: A microwave patch antenna comprising: a plurality of conductive antenna patterns; a plurality of groundplanes; a plurality of feed elements; a plurality of feed slots to allow feed elements to pass through the non-woven dielectric spacers; and a plurality of dielectric separator layers comprised of corrugated non-woven fabric as necessary to form a patch antenna construction.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: May 8, 2012
    Assignee: Applied Radar, Inc.
    Inventors: Michael A. Deaett, William H. Weedon, III, Behnam Pourdeyhimi
  • Publication number: 20120089292
    Abstract: A method for navigating a moving object (vehicle) utilizing a Navigation manager module and comprising the steps of: communicating with all sensors, processing units, mission manager and other vehicles navigation managers; configuring and reconfiguring sensors based on mission scenario objectives, in-vehicle and global constraints; sensor grouping according to relationship to the vehicle and environment, where an entire sensor group is seen by navigation manager as a single sensor; processing unit containing Update Filter; and a dynamically updated API database.
    Type: Application
    Filed: February 12, 2011
    Publication date: April 12, 2012
    Inventors: Leonid Naimark, William H. Weedon, III, Marcos Antonio Bergamo
  • Patent number: 7855617
    Abstract: A circulator capable of simultaneous transmit and receive operations, high frequency, high isolation and noise figure suppression comprising: an antenna port; a transmission port; a receiving port; three quadrature hybrids, two directional couplers; wherein transmit signal entering the transmit port are split into quadrature components and coupled separately and directionally by the two directional couplers to the antenna port where the coupled quadrature components of the transmit signal are recombined in phase, while the transmit leakage to the receive port are recombined destructively in phase; said arrangement simultaneously allows the receive signal entering the antenna port to be split into quadrature components by the antenna quadrature hybrid and transmitted through the directional couplers separately and entering the receive quadrature hybrid where the quadrature components of the receive signal are recombined in phase at the receive port; said arrangement reduces the insertion loss from the antenna
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: December 21, 2010
    Assignee: Applied Radar, Inc
    Inventors: Siu K. Cheung, William H. Weedon, III
  • Publication number: 20100289598
    Abstract: A circulator capable of simultaneous transmit and receive operations, high frequency, high isolation and noise figure suppression comprising: an antenna port; a transmission port; a receiving port; three quadrature hybrids, two directional couplers; wherein transmit signal entering the transmit port are split into quadrature components and coupled separately and directionally by the two directional couplers to the antenna port where the coupled quadrature components of the transmit signal are recombined in phase, while the transmit leakage to the receive port are recombined destructively in phase; said arrangement simultaneously allows the receive signal entering the antenna port to be split into quadrature components by the antenna quadrature hybrid and transmitted through the directional couplers separately and entering the receive quadrature hybrid where the quadrature components of the receive signal are recombined in phase at the receive port; said arrangement reduces the insertion loss from the antenna
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: Siu K. Cheung, William H. Weedon, III
  • Patent number: 7834719
    Abstract: A three port circulator capable of simultaneous transmit and receive operations, high frequency, enhanced high isolation, noise suppression at the receive port and broadband performance comprising: an antenna port; a transmission port; a receiving port; wherein each port is connected to a 90 degree combiner/divider or a quadrature hybrid for splitting an input signal into two output components, the said output components have a ninety degrees relative phase difference to each other; each of said 90 degree combiners/dividers or quadrature hybrids in addition to the connection to the above mentioned ports has at least two output connections each of which are connected to a ferrite circulator and if a fourth connection, said fourth connection is attached to a matching load circuit; this arrangement of circuits allows the phase shifted signals from the transmit port to enter the 90 degree combiner/divider or quadrature hybrid and be recombined in phase at the antenna port, any residue signal due to impedance mism
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: November 16, 2010
    Assignee: Applied Radar Inc
    Inventors: Siu K. Cheung, William H. Weedon, III
  • Patent number: 7793405
    Abstract: A method of constructing fabric microwave antennas with a calendering apparatus which comprises: providing a calendaring apparatus having a plurality of roller two of said rollers are arranged as a nip or meeting point; heating said rollers located at said nip; setting the pressure at said nip or meeting point of said rollers; shaping antenna patches from conductive fabric; feeding at least one roll of carrier fabric into said heated and pressurized nip; placing said preformed conductive patches on to the carrier fabric before said carrier fabric enters said heated and pressurized nip of the calendering apparatus so that said preformed conductive patches and said carrier fabric are bonded or calendered by the heat and pressure effects of said nip; and cutting said calendered or bonded layers of conductive and non-conductive fabric into desired shapes for incorporation into flexible structures.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: September 14, 2010
    Assignee: Applied Radar Inc
    Inventors: Michael A. Deaett, William H. Weedon, III, Terezie Zapletalova
  • Patent number: 7463198
    Abstract: A method of constructing an antenna, filter, or similar structure comprising one or more planar electrically conductive radiating and/or receiving elements having conductive feedlines attached thereto and a planar around reference conductor spaced therefrom by a spacer layer, comprising the steps of: providing a planar dielectric fabric spacer layer; applying conductive material to a first side of said spacer layer, by an embroidery process employing conductive thread or yarn, to define said electrically conductive radiating and/or receiving elements having conductive feedlines attached thereto; providing a planar around reference conductor on the opposite side of said planar spacer layer in a position corresponding to the pattern of said electrically conductive radiating and/or receiving elements having conductive feedlines attached thereto; and providing a connection whereby said conductive feedlines attached to said electrically conductive radiating and/or receiving elements, and said planar around referen
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Radar Inc.
    Inventors: Michael A. Deaett, William H. Weedon, III, Behnam Pourdeyhimi
  • Patent number: 7461444
    Abstract: Antennas are fabricated using fabric substrates, and, in some embodiments, known stitching techniques to fabricate the conductive members required, including connecting wiring and radiating and/or receiving elements. In one embodiment, one or more “patch antennas”, that is, planar radiating and/or receiving elements, are connected to transmitting and/or receiving electronics by means of a connector and feed line structure. The antenna structure comprises multiple layers of fabric, some of which may contain patch antenna and/or feedline patterns made of conductive fabric, made by embroidery using conductive thread or yarn, or onto which patch antennas may be bonded. A ground plane layer may be fabricated similarly. Between the fabric layers containing the conductive patterns, there are one or more layers of insulating fabrics that separate the conductive fabric layers by a dielectric layer. Additional sheets of adhesive between the fabric layers may be used to attach the fabric layers.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: December 9, 2008
    Inventors: Michael A. Deaett, William H. Weedon, III
  • Publication number: 20080291093
    Abstract: A microwave patch antenna comprising: a plurality of conductive antenna patterns; a plurality of groundplanes; a plurality of feed elements; a plurality of feed slots to allow feed elements to pass through the non-woven dielectric spacers; and a plurality of dielectric separator layers comprised of corrugated non-woven fabric as necessary to form a patch antenna construction.
    Type: Application
    Filed: August 7, 2008
    Publication date: November 27, 2008
    Inventors: Michael A. Deaett, William H. Weedon, III, Behnam Pourdeyhimi