Patents by Inventor William HERSMAN

William HERSMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11855406
    Abstract: Gaseous laser systems and related techniques are disclosed. Techniques disclosed herein may be utilized, in accordance with some embodiments, in providing a gaseous laser system with a configuration that provides (A) pump illumination with distinct edge surfaces for an extended depth and (B) an output beam illumination from a resonator cavity with distinct edges in its reflectivity profile, thereby providing (C) pump beam and output beam illumination on a volume so that the distinct edge surfaces of its pump and beam illumination are shared-edge surfaces with (D) further edge surfaces of the amplifier volume at the surfaces illuminated directly by the pump or output beams, as defined by optical windows and (optionally) by one or more flowing gas curtains depleted of the alkali vapor flowing along those optical windows. Techniques disclosed herein may be implemented, for example, in a diode-pumped alkali laser (DPAL) system, in accordance with some embodiments.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: December 26, 2023
    Assignee: XEMED LLC
    Inventors: F. William Hersman, Jan H. Distelbrink
  • Publication number: 20230318251
    Abstract: Gaseous laser systems and related techniques are disclosed. Techniques disclosed herein may be utilized, in accordance with some embodiments, in providing a gaseous laser system with a configuration that provides (A) pump illumination with distinct edge surfaces for an extended depth and (B) an output beam illumination from a resonator cavity with distinct edges in its reflectivity profile, thereby providing (C) pump beam and output beam illumination on a volume so that the distinct edge surfaces of its pump and beam illumination are shared-edge surfaces with (D) further edge surfaces of the amplifier volume at the surfaces illuminated directly by the pump or output beams, as defined by optical windows and (optionally) by one or more flowing gas curtains depleted of the alkali vapor flowing along those optical windows. Techniques disclosed herein may be implemented, for example, in a diode-pumped alkali laser (DPAL) system, in accordance with some embodiments.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: F. William Hersman, Jan H. Distelbrink
  • Publication number: 20200384437
    Abstract: An apparatus, system, and methods for polarizing nuclei of a noble gas are disclosed. The disclosed system may include a polarization apparatus configured to polarize a noble gas mixture including xenon-129. The disclosed system also may include separate volumes for (1) saturating the polarizable noble gas mixture with alkali metal vapor, (2) desaturating said noble gas mixture from its alkali metal vapor after polarization is completed, (3) intermediate storage of the resultant polarized noble gas mixture, and (4) transfer of said polarized noble gas mixture to a storage vessel (e.g., a delivery bag). The disclosed system further may include separate reservoirs for (1) the noble gas(es) to be polarized, (2) lightweight gas(es) to displace the noble gas(es), and (3) a heavy inert gas (e.g., such as natural xenon) to push the polarized noble gas(es) into a storage vessel.
    Type: Application
    Filed: June 8, 2020
    Publication date: December 10, 2020
    Inventors: F. William Hersman, Iulian C. Ruset
  • Patent number: 10348057
    Abstract: A high power diode laser system selects the central wavelength and narrows the spectral bandwidth by employing one or more atomic line filters (ALFs) as the wavelength selective element in the external cavity to optimize high power multi-mode operation. The high power diode laser system may include multiple diode laser sources, such as multiple diode laser bar stacks, providing multiple output beams. In an “in-line” or “straight through” configuration, a partially reflective surface terminates the external cavity to feed beam power back through the external cavity and to provide one or more output beams. In a “splitter” or “power divider” configuration, a highly reflective surface terminates the external cavity and one or more beam splitters between the diode laser source(s) and the ALF are used to provide one or more output beams. An afocal telescope may be used to image the diode laser source(s) at the reflective surface terminating the external cavity.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 9, 2019
    Assignee: UNIVERSITY OF NEW HAMPSHIRE
    Inventors: William Hersman, Michael Hersman
  • Publication number: 20180205201
    Abstract: A high power diode laser system selects the central wavelength and narrows the spectral bandwidth by employing one or more atomic line filters (ALFs) as the wavelength selective element in the external cavity to optimize high power multi-mode operation. The high power diode laser system may include multiple diode laser sources, such as multiple diode laser bar stacks, providing multiple output beams. In an “in-line” or “straight through” configuration, a partially reflective surface terminates the external cavity to feed beam power back through the external cavity and to provide one or more output beams. In a “splitter” or “power divider” configuration, a highly reflective surface terminates the external cavity and one or more beam splitters between the diode laser source(s) and the ALF are used to provide one or more output beams. An afocal telescope may be used to image the diode laser source(s) at the reflective surface terminating the external cavity.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 19, 2018
    Inventors: William HERSMAN, Michael HERSMAN
  • Patent number: 9780522
    Abstract: The system and method for modifying the output beam parameters of a plurality of laser diode array sources comprises scalable pump sources for use with diode pumped alkali lasers. The present invention optimizes a diode laser pump source by spectrally-narrowing stacks of diode laser array bars using a single external cavity outfitted with a proprietary step-mirror and cylindrical optical elements. The system and method of the present invention multiplies by one-hundred fold the number of stacks that can be narrowed, vastly increasing the attainable power output by utilizing beam-splitters.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 3, 2017
    Assignee: University of New Hampshire
    Inventors: F. William Hersman, Jan Distelbrink
  • Publication number: 20170229831
    Abstract: Techniques and architecture are disclosed for preserving optical surfaces (e.g., windows, coatings, etc.) in a flowing gas amplifier laser system, such as a diode-pumped alkali laser (DPAL) system. In some instances, the disclosed techniques/architecture can be used, for example, to protect optical surfaces in a DPAL system from: (1) chemical attack by pump-bleached alkali vapor atoms and/or ions; and/or (2) fouling by adherence thereto of reaction products/soot produced in the DPAL. Also, in some instances, the disclosed techniques/architecture can be used to substantially match the geometry of the pumping volume with that of the lasing volume, thereby minimizing or otherwise reducing the effects of amplified spontaneous emission (ASE) on DPAL output power. Furthermore, in some cases, the disclosed techniques/architecture can be used to provide a DPAL system capable of producing a beam output power in the range of about 20 kW to 10 MW, or greater.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 10, 2017
    Applicant: University of New Hampshire
    Inventors: F. William Hersman, David W. Watt
  • Patent number: 9673588
    Abstract: Techniques and architecture are disclosed for managing alkali vapor concentration in a lasing gas at non-condensing levels. In some instances, the disclosed techniques/architecture can be used to control and/or stabilize the concentration of alkali vapor in a lasing gas volume to any desired fraction of its saturation value under dynamically changing thermal loads. In some such instances, the concentration of alkali vapor in a given lasing gas volume can be maintained at a value which is sufficiently far from the saturation point to prevent or otherwise reduce condensation of the alkali vapor, for example, upon accelerating the lasing gas through a pressure drop into an optical pumping cavity of an alkali vapor laser system (e.g., such as a diode-pumped alkali laser, or DPAL, system). In some instances, the disclosed techniques/architecture can be used to establish a temperature gradient and/or an alkali vapor concentration gradient in the flowing lasing gas volume.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 6, 2017
    Assignee: University of New Hampshire
    Inventors: F. William Hersman, David W. Watt
  • Patent number: 9653869
    Abstract: Techniques and architecture are disclosed for preserving optical surfaces (e.g., windows, coatings, etc.) in a flowing gas amplifier laser system, such as a diode-pumped alkali laser (DPAL) system. In some instances, the disclosed techniques/architecture can be used, for example, to protect optical surfaces in a DPAL system from: (1) chemical attack by pump-bleached alkali vapor atoms and/or ions; and/or (2) fouling by adherence thereto of reaction products/soot produced in the DPAL. Also, in some instances, the disclosed techniques/architecture can be used to substantially match the geometry of the pumping volume with that of the lasing volume, thereby minimizing or otherwise reducing the effects of amplified spontaneous emission (ASE) on DPAL output power. Furthermore, in some cases, the disclosed techniques/architecture can be used to provide a DPAL system capable of producing a beam output power in the range of about 20 kW to 10 MW, or greater.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 16, 2017
    Assignee: University of New Hampshire
    Inventors: F. William Hersman, David W. Watt
  • Publication number: 20140133515
    Abstract: The system and method for modifying the output beam parameters of a plurality of laser diode array sources comprises scalable pump sources for use with diode pumped alkali lasers. The present invention optimizes a diode laser pump source by spectrally-narrowing stacks of diode laser array bars using a single external cavity outfitted with a proprietary step-mirror and cylindrical optical elements. The system and method of the present invention multiplies by one-hundred fold the number of stacks that can be narrowed, vastly increasing the attainable power output by utilizing beam-splitters.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Inventors: F. William Hersman, Jan Distelbrink
  • Patent number: 8405022
    Abstract: A polarizing apparatus has a thermally conductive partitioning system in a polarizing cell. In the polarizing region, this thermally conductive partitioning system serves to prevent the elevation of the temperature of the polarizing cell where laser light is maximally absorbed to perform the polarizing process. By employing this partitioning system, increases in laser power of factors of ten or more can be beneficially utilized to polarize xenon. Accordingly, the polarizing apparatus and the method of polarizing 129Xe achieves higher rates of production.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 26, 2013
    Assignee: University of New Hampshire
    Inventor: F. William Hersman
  • Publication number: 20110260076
    Abstract: A polarizing apparatus has a thermally conductive partitioning system in a polarizing cell. In the polarizing region, this thermally conductive partitioning system serves to prevent the elevation of the temperature of the polarizing cell where laser light is maximally absorbed to perform the polarizing process. By employing this partitioning system, increases in laser power of factors of ten or more can be beneficially utilized to polarize xenon. Accordingly, the polarizing apparatus and the method of polarizing 129Xe achieves higher rates of production.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 27, 2011
    Inventor: F. William Hersman
  • Patent number: 7928359
    Abstract: A polarizing apparatus has a thermally conductive partitioning system in a polarizing cell. In the polarizing region, this thermally conductive partitioning system serves to prevent the elevation of the temperature of the polarizing cell where laser light is maximally absorbed to perform the polarizing process. By employing this partitioning system, increases in laser power of factors of ten or more can be beneficially utilized to polarize xenon. Accordingly, the polarizing apparatus and the method of polarizing 129Xe achieves higher rates of production.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: April 19, 2011
    Assignee: University of New Hampshire
    Inventor: F. William Hersman
  • Patent number: 7769068
    Abstract: A system to increase the brightness of, and control gaps in, the light from an external cavity, spectrally narrowed, stack of diode laser bars employing a stepped mirror and transparent plates in the external cavity.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: August 3, 2010
    Assignee: University of New Hampshire
    Inventors: F. William Hersman, Jan Distelbrink, Hongguo Zhu
  • Patent number: 7719268
    Abstract: The present invention is a polarizing process involving a number of steps. The first step requires moving a flowing mixture of gas, the gas at least containing a polarizable nuclear species and vapor of at least one alkali metal, with a transport velocity that is not negligible when compared with the natural velocity of diffusive transport. The second step is propagating laser light in a direction, preferably at least partially through a polarizing cell. The next step is directing the flowing gas along a direction generally opposite to the direction of laser light propagation. The next step is containing the flowing gas mixture in the polarizing cell. The final step is immersing the polarizing cell in a magnetic field. These steps can be initiated in any order, although the flowing gas, the propagating laser and the magnetic field immersion must be concurrently active for polarization to occur.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: May 18, 2010
    Inventors: F. William Hersman, Mark Leuschner, Jeannette Carberry
  • Patent number: 7281393
    Abstract: A method and apparatus for the accumulation of hyperpolarized 129Xe is described. A gas mixture comprising 129Xe is flowed through a heat exchanger tube from the first end to the second end. Concurrently, the outer surface of the heat exchanger tube is controllably refrigerated, beginning with the second end, to a temperature low enough to freeze the 129Xe on the inner surface of the heat exchanger tube.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: October 16, 2007
    Assignee: University of New Hampshire
    Inventor: F. William Hersman
  • Patent number: 6949169
    Abstract: The present invention is a polarizing process involving a number of steps. The first step requires moving a flowing mixture of gas, the gas at least containing a polarizable nuclear species and vapor of at least one alkali metal, with a transport velocity that is not negligible when compared with the natural velocity of diffusive transport. The second step is propagating laser light in a direction, preferably at least partially through a polarizing cell. The next step is directing the flowing gas along a direction generally opposite to the direction of laser light propagating. The next step is containing the flowing gas mixture in the polarizing cell. The final step is immersing the polarizing cell in a magnetic field. These steps can be initiated in any order, although the flowing gas, the propagating laser and the magnetic field immersion must be concurrently active for polarization to occur.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: September 27, 2005
    Assignee: University of New Hampshire
    Inventors: F. William Hersman, Mark Leuschner, Jeannette Carberry
  • Publication number: 20040223522
    Abstract: A system for polarizing laser light produces a polarized laser beam with a desired spatial cross-section and minimum divergence. Optical fibers emitting laser light are configured to a chosen spatial cross-section. The emitted laser light is split into two beams that are polarized. The spatial cross-section of one of the beams are combined so that they are aligned and contiguous.
    Type: Application
    Filed: February 5, 2004
    Publication date: November 11, 2004
    Inventor: F. William Hersman
  • Publication number: 20020107439
    Abstract: The present invention is a polarizing process involving a number of steps. The first step requires moving a flowing mixture of gas, the gas at least containing a polarizable nuclear species and vapor of at least one alkali metal, with a transport velocity that is not negligible when compared with the natural velocity of diffusive transport. The second step is propagating laser light in a direction, preferably at least partially through a polarizing cell. The next step is directing the flowing gas along a direction generally opposite to the direction of laser light propagation. The next step is containing the flowing gas mixture in the polarizing cell. The final step is immersing the polarizing cell in a magnetic field. These steps can be initiated in any order, although the flowing gas, the propagating laser and the magnetic field immersion must be concurrently active for polarization to occur.
    Type: Application
    Filed: July 12, 2001
    Publication date: August 8, 2002
    Inventors: F. William Hersman, Mark Leuschner