Patents by Inventor William J. Farrell

William J. Farrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10202237
    Abstract: An improved bulk bag for containing dry bulk, granular, and/or pulverized materials designed to prevent dust cloud escape and migration during discharge/emptying of the materials in bulk bag using an integrated dust barrier skirt affixed to the exterior of the bulk bag and telescopable to create a dust cloud curtain prior to content discharge.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: February 12, 2019
    Assignee: Blastcrete Equipment Company
    Inventors: William J. Farrell, Dennis Limbaugh, Robert Carlson
  • Patent number: 9624048
    Abstract: An improved bulk bag for containing dry bulk, granular, and/or pulverized materials designed to prevent dust cloud escape and migration during discharge/emptying of the materials in bulk bag using an integrated dust barrier skirt affixed to the exterior of the bulk bag and telescopable to create a dust cloud curtain prior to content discharge.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 18, 2017
    Assignee: Blastcrete Equipment Company
    Inventors: William J. Farrell, Dennis Limbaugh, Robert Carlson
  • Publication number: 20150203289
    Abstract: An improved bulk bag for containing dry bulk, granular, and/or pulverized materials designed to prevent dust cloud escape and migration during discharge/emptying of the materials in bulk bag using an integrated dust barrier skirt affixed to the exterior of the bulk bag and telescopable to create a dust cloud curtain prior to content discharge.
    Type: Application
    Filed: December 19, 2014
    Publication date: July 23, 2015
    Applicant: BLASTCRETE EQUIPMENT COMPANY
    Inventors: William J. Farrell, Dennis Limbaugh, Robert Carlson
  • Publication number: 20150030913
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: August 6, 2014
    Publication date: January 29, 2015
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steven M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8916290
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 23, 2014
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8677719
    Abstract: This invention relates to building materials and methods. A building assembly for constructing a building includes load bearing structural panels joined and finished with a non-load bearing panels. The load bearing panels comprise a structural concrete insulating panel (SCIP) comprising a pair of wire mesh members sandwiching a middle member comprising polystyrene, wherein each of said wire mesh members defines two outwardly projecting screed ridges. The non-load bearing panels comprise a pair of fiber cement boards sandwiching a polystyrene core. The load bearing SCIP panel is placed in position and then the non-load bearing panel is positioned in a desirous location abutting the SCIP. The SCIP then receives a layer of cementitious material that is cut flat using the screed ridges. The assembled SCIP and non-load bearing composite is then finished with a final finishing layer so that the entire assembly has the same outer appearance.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 25, 2014
    Assignee: Met-Rock, LLC
    Inventor: William J. Farrell, Jr.
  • Publication number: 20130266844
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 10, 2013
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8499514
    Abstract: This invention relates to screed methods and building panels. According to the invention there is provided a construction panel comprising two outer wire mesh members and a middle member secured therebetween. The wire mesh members may have a plurality of V-shaped impressions along their length which serve as a built in visual and mechanical screed for finishing the panel with shotcrete or plaster. Alternatively, the wire mesh members may have a clipped-on-screed member attached thereto which serves as a visual and mechanical screed for finishing the panel. The middle member may comprises a composite of alternating layers of wire trusses and polystyrene foam. The middle member may be secured in a compressed state and released after attachment to the wire mesh members.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: August 6, 2013
    Assignee: Met-Rock, LLC
    Inventors: William J. Farrell, Jr., John M. Metrock
  • Publication number: 20130157018
    Abstract: This invention relates to building materials and methods. A building assembly for constructing a building includes load bearing structural panels joined and finished with a non-load bearing panels. The load bearing panels comprise a structural concrete insulating panel (SCIP) comprising a pair of wire mesh members sandwiching a middle member comprising polystyrene, wherein each of said wire mesh members defines two outwardly projecting screed ridges. The non-load bearing panels comprise a pair of fiber cement boards sandwiching a polystyrene core. The load bearing SCIP panel is placed in position and then the non-load bearing panel is positioned in a desirous location abutting the SCIP. The SCIP then receives a layer of cementitious material that is cut flat using the screed ridges. The assembled SCIP and non-load bearing composite is then finished with a final finishing layer so that the entire assembly has the same outer appearance.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 20, 2013
    Inventor: William J. Farrell, JR.
  • Patent number: 8389155
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: March 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8122662
    Abstract: This invention relates to building materials and methods. A building assembly for constructing a building includes load bearing structural panels joined and finished with a non-load bearing panels. The load bearing panels comprise a structural concrete insulating panel (SCIP) comprising a pair of wire mesh members sandwiching a middle member comprising polystyrene, wherein each of said wire mesh members defines two outwardly projecting screed ridges. The non-load bearing panels comprise a pair of fiber cement boards sandwiching a polystyrene core. The load bearing SCIP panel is placed in position and then the non-load bearing panel is positioned in a desirous location abutting the SCIP. The SCIP then receives a layer of cementitious material that is cut flat using the screed ridges. The assembled SCIP and non-load bearing composite is then finished with a final finishing layer so that the entire assembly has the same outer appearance.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 28, 2012
    Assignee: Met-Rock, LLC
    Inventor: William J. Farrell, Jr.
  • Publication number: 20110318635
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: June 28, 2011
    Publication date: December 29, 2011
    Applicant: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Frannise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 7968226
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: June 28, 2011
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Publication number: 20090094927
    Abstract: This invention relates to building materials and methods. A building assembly for constructing a building includes load bearing structural panels joined and finished with a non-load bearing panels. The load bearing panels comprise a structural concrete insulating panel (SCIP) comprising a pair of wire mesh members sandwiching a middle member comprising polystyrene, wherein each of said wire mesh members defines two outwardly projecting screed ridges. The non-load bearing panels comprise a pair of fiber cement boards sandwiching a polystyrene core. The load bearing SCIP panel is placed in position and then the non-load bearing panel is positioned in a desirous location abutting the SCIP. The SCIP then receives a layer of cementitious material that is cut flat using the screed ridges. The assembled SCIP and non-load bearing composite is then finished with a final finishing layer so that the entire assembly has the same outer appearance.
    Type: Application
    Filed: December 19, 2008
    Publication date: April 16, 2009
    Applicant: MET-ROCK, LLC
    Inventor: William J. Farrell, JR.
  • Publication number: 20040134158
    Abstract: This invention relates to screed methods and building panels. According to the invention there is provided a construction panel comprising two outer wire mesh members and a middle member secured therebetween. The wire mesh members may have a plurality of V-shaped impressions along their length which serve as a built in visual and mechanical screed for finishing the panel with shotcrete or plaster. Alternatively, the wire mesh members may have a clipped-on-screed member attached thereto which serves as a visual and mechanical screed for finishing the panel. The middle member may comprises a composite of alternating layers of wire trusses and polystyrene foam. The middle member may be secured in a compressed state and released after attachment to the wire mesh members.
    Type: Application
    Filed: October 30, 2003
    Publication date: July 15, 2004
    Inventors: William J. Farrell, John M. Metrock
  • Publication number: 20040064163
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a major bottom portion, an open top to receive the cover; and a plurality of sides being radiused at intersections with each other and with the major bottom portion to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Publication number: 20040062985
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 5994660
    Abstract: A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: November 30, 1999
    Assignee: U.S. Department of Energy
    Inventors: Richard A. Rosenberg, George A. Goeppner, John R. Noonan, William J. Farrell, Qing Ma
  • Patent number: 5678969
    Abstract: The present invention presents an air bag, and a method of using the same, which has at least one indicator line marking thereon for providing a visual indication of when the air bag is in a properly inflated condition for filling a void between loads, such as cargo or the like, in a truck, airplane, train or the like. Each indicator line includes a center portion which is of a first design, such as being blue-colored, and having easily identifiable ends. Preferably, each indicator line has end portions of a second design, such as being red-colored, which are on opposite sides of the center portion of the line and which are visually distinct from the first design. The center portion of the indicator line has a length which is substantially equal to the maximum thickness of the air bag.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: October 21, 1997
    Assignee: Illinois Tool Works Inc.
    Inventors: William J. Farrell, Thomas C. Keenan, Gregory S. King
  • Patent number: 4721842
    Abstract: A method and apparatus for correcting the undeflected resting position of an electron beam which has been displaced from its previous resting position because of physical or positional changes in elements of the electron gun which is generating the electron beam. The electron beam is directed towards a detector which determines the direction and amplitude of the deviation along mutually perpendicular axes of the point of impingement of the electron beam from a given reference point. The signals generated by the detector, in cooperation with a computer-controlled deflection system of the electron gun, cause the beam to be displaced in a series of iterative steps to the reference point. The distance and direction of the beam from its resting position to the reference point is maintained in the memory of the computer.
    Type: Grant
    Filed: August 29, 1986
    Date of Patent: January 26, 1988
    Assignee: Ferranti Sciaky, Inc.
    Inventor: William J. Farrell