Patents by Inventor William J. Linder

William J. Linder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115856
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, the medical device having a first lead including a first wire and second wire; a second lead can include a third wire and fourth wire; and a first electrode in electrical communication with the first wire, a second electrode in electrical communication with the second wire, a third electrode in electrical communication with the third wire, and a fourth electrode in electrical communication with the fourth wire. The first and third electrodes form a supply electrode pair configured to deliver one or more electric fields to the cancerous tumor. The second and fourth electrodes form a sensing electrode pair configured to measure an impedance of the cancerous tumor independent of an impedance of the first electrode, the first wire, the third electrode, the third wire, and components in electrical communication therewith. Other embodiments are also included herein.
    Type: Application
    Filed: June 28, 2023
    Publication date: April 11, 2024
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Aleksandra Kharam
  • Patent number: 11931592
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise an H-bridge output circuit having low and high sides, with a current controlling circuit coupled to the high side of the H-bridge output circuit and a current monitoring circuit coupled to the low side of the H-bridge output circuit. Alternate current paths to the output of the H-bridge, or to the H-Bridge itself, are used for delivering different therapies to the patient.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: March 19, 2024
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brandon Tyler Keil, William J. Linder, Keith R. Maile
  • Patent number: 11890476
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20240024670
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having an electric field generating circuit configured to generate one or more electric fields and a control circuit in communication with the electric field generating circuit. The control circuit configured to control delivery of the one or more electric fields from the electric field generating circuit. The system can include two or more electrodes to deliver the electric fields to a site of a cancerous tumor within a patient and a temperature sensor to measure the temperature of tissue at the site of the cancerous tumor. The control circuit can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz. Other embodiments are also included herein.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 25, 2024
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Aleksandra Kharam
  • Patent number: 11850422
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having an electric field generating circuit and control circuitry configured to control delivery of the one or more electric fields from the electric field generating circuit to the site of the cancerous tissue. An implantable lead is included having a lead body including a first electrical conductor disposed within the lead body, and a first electrode coupled to the lead body, the first electrode in electrical communication with the first electrical conductor, wherein the first electrical conductor forms part of an electrical circuit by which the electric fields from the electric field generating circuit are delivered to the site of the cancerous tissue, and the first electrode can include a conductive coil filar disposed around the lead body. Other embodiments are also included herein.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 26, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L Schmidt, Devon N. Arnholt, Keith R. Maile, Sarah Melissa Gruba, William J. Linder
  • Publication number: 20230381525
    Abstract: Embodiments herein relate to medical device systems including features to enable secure wireless communications between components thereof. In an embodiment, a medical device system is included having an implantable medical device packaging unit and an implantable device. The implantable device can include a control circuit and a communications antenna. The implantable device can be configured to fit within the implantable medical device packaging unit prior to implantation in a patient. The system can also include a data bearing tag, wherein the data bearing tag is disposed on or in the implantable medical device packaging unit. In some embodiments the system can also include an external communication device. The external communication device can be configured to receive data from the data bearing tag enabling secure wireless communications between the implantable device and the external communication device. Other embodiments are also included herein.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: Daniel Joseph Landherr, Ron A. Balczewski, Keith R. Maile, William J. Linder
  • Patent number: 11813463
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 14, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Brendan Early Koop, Michael J. Kane
  • Publication number: 20230330416
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having at least one electric field generating circuit configured to generate one or more electric fields; control circuitry in communication with the electric field generating circuit, the control circuitry configured to control delivery of the one or more electric fields from the at least one electric field generating circuit; and two or more electrodes to deliver the electric fields to the site of a cancerous tumor within a patient. At least one electrode can be configured to be implanted. At least one electrode can be configured to be external. The control circuitry can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz.
    Type: Application
    Filed: March 20, 2023
    Publication date: October 19, 2023
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Jacob M. Ludwig, Aleksandra Kharam
  • Patent number: 11745023
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise a charging circuit using a transformer to store and build up energy on an HV capacitor or capacitor stack, with the HV capacitor in turn coupled to an H-bridge output circuit having low and high sides for issuing therapy. In the output current path, a current controlling circuitry is placed between the H-bridge and ground, allowing the greater flexibility in the selection of switching devices, and drivers for such devices, in the H-bridge circuit and/or enabling circuits between the H-bridge and the HV capacitor or other therapy circuit.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: September 5, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brandon Tyler Keil, Paul John McNamee, William J. Linder
  • Patent number: 11712561
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having an electric field generating circuit configured to generate one or more electric fields and a control circuit in communication with the electric field generating circuit. The control circuit configured to control delivery of the one or more electric fields from the electric field generating circuit. The system can include two or more electrodes to deliver the electric fields to a site of a cancerous tumor within a patient and a temperature sensor to measure the temperature of tissue at the site of the cancerous tumor. The control circuit can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz. Other embodiments are also included herein.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 1, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Aleksandra Kharam
  • Patent number: 11691006
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, the medical device having a first lead including a first wire and second wire; a second lead can include a third wire and fourth wire; and a first electrode in electrical communication with the first wire, a second electrode in electrical communication with the second wire, a third electrode in electrical communication with the third wire, and a fourth electrode in electrical communication with the fourth wire. The first and third electrodes form a supply electrode pair configured to deliver one or more electric fields to the cancerous tumor. The second and fourth electrodes form a sensing electrode pair configured to measure an impedance of the cancerous tumor independent of an impedance of the first electrode, the first wire, the third electrode, the third wire, and components in electrical communication therewith. Other embodiments are also included herein.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 4, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Aleksandra Kharam
  • Patent number: 11678847
    Abstract: A medical device includes a case and a core assembly. The core assembly includes operational circuitry enclosed within a core assembly housing. The medical device also includes a battery assembly, which includes a battery enclosed within a battery housing. The case includes the core assembly housing and the battery housing. A first electrode is coupled to, and electrically isolated from, the case; and a second electrode is electrically coupled to the case. The second electrode is electrically coupled to the operational circuitry via a sensing pathway that includes a portion of the case. The battery is electrically coupled to the operational circuitry via an energy supply pathway that includes the portion of the case.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: June 20, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, William J. Linder
  • Patent number: 11607542
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having at least one electric field generating circuit configured to generate one or more electric fields; control circuitry in communication with the electric field generating circuit, the control circuitry configured to control delivery of the one or more electric fields from the at least one electric field generating circuit; and two or more electrodes to deliver the electric fields to the site of a cancerous tumor within a patient. At least one electrode can be configured to be implanted. At least one electrode can be configured to be external. The control circuitry can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 21, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Jacob M. Ludwig, Aleksandra Kharam
  • Publication number: 20230014331
    Abstract: A medical device includes: a case at least a portion of which functions as a first electrode; a second electrode disposed in a header coupled to the case; a core assembly, the core assembly including operational circuitry enclosed within a core assembly housing, wherein the case includes the core assembly housing; and a battery assembly, the battery assembly including a battery enclosed within a battery housing, where the case further comprises the battery housing; where the operational circuitry is configured to drive a regulated voltage onto the case.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 19, 2023
    Inventors: Ron A. Balczewski, William J. Linder, Dan C. Goldman, Nicholas J. Stessman, Aleksandra Kharam
  • Patent number: 11529523
    Abstract: A bridge device includes a housing, a plurality of electrodes exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A controller is disposed within the housing. A first communications module is operably coupled to the controller and to the at least two of the plurality of electrodes. The first communications module is configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes using conducted communication. A second communications module is operably coupled to the controller and is configured to allow the controller to communicate with a remote device external to the patient.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 20, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Ron A. Balczewski, William J. Linder, Keith R. Maile
  • Patent number: 11497921
    Abstract: Systems, methods and implantable devices configured to provide cardiac resynchronization therapy and/or bradycardia pacing therapy. A first device located in the heart of the patient is configured to receive a communication from a second device and deliver a pacing therapy in response to or in accordance with the received communication. A second device located elsewhere is configured to determine an atrial event has occurred and communicate to the first device to trigger the pacing therapy. The second device may be configured for sensing the atrial event by the use of vector selection and atrial event windowing, among other enhancements. Exception cases are discussed and handled as well.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: November 15, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Krzysztof Z. Siejko, William J. Linder, Keith R. Maile, Amy Jean Brisben, Keith L. Herrmann, Brendan E. Koop, Benjamin J. Haasl
  • Patent number: 11476927
    Abstract: Systems and methods for managing communication strategies between implanted medical devices. Methods include temporal optimization relative to one or more identified conditions in the body. A selected characteristic, such as a signal representative or linked to a biological function, is assessed to determine its likely impact on communication capabilities, and one or more communication strategies may be developed to optimize intra-body communication.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 18, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jacob M. Ludwig, Michael J. Kane, Brendan E. Koop, William J. Linder, Keith R. Maile, Jeffrey E. Stahmann
  • Publication number: 20220296904
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 11446509
    Abstract: A medical device includes: a case at least a portion of which functions as a first electrode; a second electrode disposed in a header coupled to the case; a core assembly, the core assembly including operational circuitry enclosed within a core assembly housing, wherein the case includes the core assembly housing; and a battery assembly, the battery assembly including a battery enclosed within a battery housing, where the case further comprises the battery housing; where the operational circuitry is configured to drive a regulated voltage onto the case.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: September 20, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, William J. Linder, Dan C. Goldman, Nicholas J. Stessman, Aleksandra Kharam
  • Patent number: 11420049
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, including an electric field generating circuit configured to generate one or more electric fields at or near a site of the cancerous tumor and control circuitry in communication with the electric field generating circuit. The medical device includes one or more supply wires in electrical communication with the electric field generating circuit and one or more supply electrodes. The supply electrodes are configured to deliver an electric field at or near the site of the cancerous tumor. The medical device can include one or more sensing wires in electrical communication with the control circuitry and one or more sensing electrodes. The sensing electrodes can be configured to measure an impedance of the cancerous tumor at at least two different electric field strengths. Other embodiments are also included herein.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 23, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Sarah Melissa Gruba, Tucker James Nelson, Aleksandra Kharam