Patents by Inventor William J. Walker, Jr.

William J. Walker, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11870221
    Abstract: A spark plug and method of manufacturing, where the spark plug meets particular geometric relationships to maintain and potentially improve dielectric performance while downsizing other plug dimensions. The spark plug includes an insulator that can withstand higher voltages while having areas with a reduced cross-sectional thickness. In some embodiments, the insulator has a dielectric strength of 42 kV/mm or more with a radial thickness at the internal seal of 1.5 to 1.6 mm, inclusive, and a radial thickness at a gasket of 0.6 to 0.9 mm, inclusive.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: January 9, 2024
    Assignee: FEDERAL-MOGUL IGNITION LLC
    Inventor: William J. Walker, Jr.
  • Publication number: 20230116256
    Abstract: A spark plug and method of manufacturing, where the spark plug meets particular geometric relationships to maintain and potentially improve dielectric performance while downsizing other plug dimensions. The spark plug includes an insulator that can withstand higher voltages while having areas with a reduced cross-sectional thickness. In some embodiments, the insulator has a dielectric strength of 42 kV/mm or more with a radial thickness at the internal seal of 1.5 to 1.6 mm, inclusive, and a radial thickness at a gasket of 0.6 to 0.9 mm, inclusive.
    Type: Application
    Filed: September 19, 2022
    Publication date: April 13, 2023
    Inventor: William J. Walker, JR.
  • Publication number: 20220140575
    Abstract: A spark plug insulator comprising a ceramic body with a photopolymerized and sintered microstructure. The spark plug insulator can have one or more complex geometries, such as dual axial bores, channels or grooves for wiring or the like, or internal wells. In one embodiment, an internal well is situated in the nose portion of the axial bore. The internal well has a terminal end, a base, and a ceramic bounding ring that is diametrically reduced with respect to a diameter at the base of the internal well. In some embodiments, there is a center electrode shield portion adjacent the internal well, where a diameter of the center electrode shield portion is diametrically reduced with respect to the diameter at the base of the internal well.
    Type: Application
    Filed: September 30, 2021
    Publication date: May 5, 2022
    Inventors: William J. Walker, JR., Michael E. Saccoccia
  • Patent number: 10418789
    Abstract: A spark plug suppressor and a method of producing a spark plug suppressor from a suppressor precursor liquid that may be cured at a temperature below 300° C. The spark plug suppressor may include particles or grains dispersed in a matrix of electrically conducting material, electrically semiconducting material, or electrically non-conducting material. The suppressor may include a conductive glass seal component and a resistive suppressor component. The resistive suppressor component may be at least partially embedded in the glass seal component, and the glass seal component may seal a center electrode of the spark plug, a terminal of the spark plug, or both the center electrode and the terminal.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: September 17, 2019
    Assignee: Federal-Mogul Ignition LLC
    Inventors: Shuwei Ma, Keith Firstenberg, William J. Walker, Jr., Michael Saccoccia
  • Patent number: 10270226
    Abstract: An extruded insulator for a spark plug that is made in a manner that minimizes pores, relics and/or other defects in the insulator microstructure so that the overall dielectric strength or performance of the insulator is improved. The extruded insulator avoids many of the drawbacks associated with such defects, but also has a stepped internal bore for receiving a center electrode. In one embodiment, the extruded insulator is made with a method that uses a multi-phase extrusion process to extrude a ceramic paste around an elongated arbor and form an extruded section, and then removes the arbor from the extruded section to reveal a stepped internal bore.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 23, 2019
    Assignee: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: William J. Walker, Jr.
  • Patent number: 10177539
    Abstract: Methods of making an insulator for a condition sensing spark plug and tooling that can be used to perform the various methods, the tooling and methods involving machining one or more channels in the insulator body. The machined channels can be used to accommodate one or more wires from a sensing, display, or processing device. In one particular example, the wires are thermocouple wires used to sense temperature in an internal combustion engine while the spark plug is in use. The methods and tooling may result in channels that are formed more precisely, economically, and efficiently.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: January 8, 2019
    Assignee: FEDERAL-MOGUL IGNITION COMPANY
    Inventors: Paul William Phillips, William J. Walker, Jr., Michael E. Saccoccia
  • Patent number: 9893495
    Abstract: An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a spark plug is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 90.0 weight (wt. %), and electrically conductive metal particles in an amount of 10.0 to 50.0 wt. %, based on the total weight of the glass seal.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: February 13, 2018
    Inventors: Keith Firstenberg, William J. Walker, Jr.
  • Publication number: 20180034247
    Abstract: A spark plug suppressor and a method of producing a spark plug suppressor from a suppressor precursor liquid that may be cured at a temperature below 300° C. The spark plug suppressor may include particles or grains dispersed in a matrix of electrically conducting material, electrically semiconducting material, or electrically non-conducting material. The suppressor may include a conductive glass seal component and a resistive suppressor component. The resistive suppressor component may be at least partially embedded in the glass seal component, and the glass seal component may seal a center electrode of the spark plug, a terminal of the spark plug, or both the center electrode and the terminal.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 1, 2018
    Inventors: Shuwei Ma, Keith Firstenberg, William J. Walker, JR., Michael Saccoccia
  • Publication number: 20170310088
    Abstract: A manufacturing method, firing tray, and microwave kiln for spark plug insulators. Using microwave energy and particularly structured time-temperature profiles may allow for efficient sintering of the spark plug insulator ceramic material. The method may use a combination of radiant heat energy heating and microwave energy heating to facilitate the sintering process.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 26, 2017
    Inventors: William J. Walker, JR., Morgana L. Fall, Holly S. Shulman
  • Publication number: 20170264081
    Abstract: An extruded insulator for a spark plug that is made in a manner that minimizes pores, relics and/or other defects in the insulator microstructure so that the overall dielectric strength or performance of the insulator is improved. The extruded insulator avoids many of the drawbacks associated with such defects, but also has a stepped internal bore for receiving a center electrode. In one embodiment, the extruded insulator is made with a method that uses a multi-phase extrusion process to extrude a ceramic paste around an elongated arbor and form an extruded section, and then removes the arbor from the extruded section to reveal a stepped internal bore.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventor: William J. Walker, JR.
  • Patent number: 9751797
    Abstract: An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: September 5, 2017
    Assignee: Federal-Mogul Ignition Company
    Inventors: Keith Firstenberg, William J. Walker, Jr., Patrick J. Durham, James D. Lykowski
  • Patent number: 9698573
    Abstract: A method for making an extruded insulator for a spark plug in a manner that minimizes pores, relics and/or other defects in the insulator microstructure so that the overall dielectric strength or performance of the insulator is improved. The method may be used to manufacture an extruded insulator that avoids many of the drawbacks associated with such defects, but also has a stepped internal bore for receiving a center electrode. In one embodiment, the method uses a multi-phase extrusion process to extrude a ceramic paste around an elongated arbor and form an extruded section, and then removes the arbor from the extruded section to reveal a stepped internal bore.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: July 4, 2017
    Assignee: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: William J. Walker, Jr.
  • Patent number: 9685767
    Abstract: An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 90.0 weight (wt. %), and electrically conductive metal particles in an amount of 10.0 to 50.0 wt. %, based on the total weight of the glass seal.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: June 20, 2017
    Inventors: Keith Firstenberg, William J. Walker, Jr., Patrick J. Durham, James D. Lykowski
  • Patent number: 9407069
    Abstract: An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a spark plug is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: August 2, 2016
    Assignee: FEDERAL-MOGUL IGNITION COMPANY
    Inventors: Keith Firstenberg, William J. Walker, Jr.
  • Publication number: 20160218488
    Abstract: Methods of making an insulator for a condition sensing spark plug and tooling that can be used to perform the various methods, the tooling and methods involving machining one or more channels in the insulator body. The machined channels can be used to accommodate one or more wires from a sensing, display, or processing device. In one particular example, the wires are thermocouple wires used to sense temperature in an internal combustion engine while the spark plug is in use. The methods and tooling may result in channels that are formed more precisely, economically, and efficiently.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 28, 2016
    Inventors: Paul William Phillips, William J. Walker, JR., Michael E. Saccoccia
  • Publication number: 20160043531
    Abstract: An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a spark plug is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.
    Type: Application
    Filed: August 10, 2015
    Publication date: February 11, 2016
    Inventors: KEITH FIRSTENBERG, WILLIAM J. WALKER, JR.
  • Publication number: 20160039712
    Abstract: An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.
    Type: Application
    Filed: August 10, 2015
    Publication date: February 11, 2016
    Inventors: KEITH FIRSTENBERG, WILLIAM J. WALKER, JR., PATRICK J. DURHAM, JAMES D. LYKOWSKI
  • Patent number: 9231381
    Abstract: A spark plug and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends. The body of the center electrode is formed of a compacted and sintered conductive or semi-conductive ceramic material. The ceramic material of the body comprises at least one oxide. For example, the body of the center electrode can be formed of a perovskite structure or a spinel structure.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: January 5, 2016
    Assignee: Federal-Mogul Ignition Company
    Inventors: William J. Walker, Jr., James D. Lykowski
  • Patent number: 9219351
    Abstract: A spark plug (20) for igniting a mixture of fuel and air of an internal combustion engine comprises a center electrode (22) and a ground electrode (24). At least one of the electrodes (22, 24) includes a body portion (28, 30) formed of thermally conductive material and a firing tip (32, 34) disposed on the body portion (28, 30). The firing tip (32, 34) includes a ceramic material, providing an exposed firing surface (36, 38). The ceramic material is an electrically conductive, monolithic ceramic material. The ceramic material of the firing tip (32, 34) includes at least one perovskite structure and/or at least one a spinel structure.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: December 22, 2015
    Assignee: Federal-Mogul Ignition Company
    Inventor: William J. Walker, Jr.
  • Patent number: 9054502
    Abstract: A ceramic insulator for surrounding an electrode of an ignition device, such as a corona igniter or spark plug, is provided. The insulator is formed of a ceramic material including alumina in an amount of 28 to 38 wt. %, silica in an amount of 57 to 67 wt. %, and calcium oxide in an amount of 3 to 7 wt. %, based on the total weight of the ceramic material. The ceramic insulator is typically formed by firing a mixture of Kaolin, calcium carbonate, and silica, wherein the calcium carbonate acts as a flux during firing. The ceramic material has a relative permittivity of about 5.5 to 6.5 and thus improves the electrical efficiency of the ignition device. The ceramic material is also capable of withstanding temperatures of 900 to 1000° C. and has excellent thermal shock resistance, making it suitable for use in internal combustion engines.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: June 9, 2015
    Assignee: Federal-Mogul Ignition Company
    Inventor: William J. Walker, Jr.