Patents by Inventor William John Mason

William John Mason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230238587
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendaring step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: January 27, 2023
    Publication date: July 27, 2023
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20230226789
    Abstract: A microporous membrane wipe and a method of using such microporous membrane wipe are disclosed. The microporous membrane wipe may be uniaxially or biaxially oriented microporous membrane. The uniaxially or biaxially oriented microporous membrane may be made from one or more block and/or impact copolymers of polyethylene and/or polypropylene. A method of using such a microporous membrane wipe for skin oil blotting is also disclosed. Further disclosed is a method of using such a microporous membrane wipe for cleaning a surface for the removal of fingerprints, smudges and the like, where such surfaces may include, for example, eyeglasses, electronics, cell phones, displays, optical devices, camera lenses, microscope lenses and other precision optics, and/or the like.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Kristoffer K. Stokes, Karl F. Humiston, Changqing Wang Adams, William John Mason
  • Publication number: 20230102962
    Abstract: This application is directed to new and/or improved MD and/or TD stretched and optionally calendered membranes, separators, base films, microporous membranes, battery separators including said separator, base film or membrane, batteries including said separator, and/or methods for making and/or using such membranes, separators, base films, microporous membranes, battery separators and/or batteries. For example, new and/or improved methods for making microporous membranes, and battery separators including the same, that have a better balance of desirable properties than prior microporous membranes and battery separators. The methods disclosed herein comprise the following steps: 1.) obtaining a non-porous membrane precursor; 2.) forming a porous biaxially-stretched membrane precursor from the non-porous membrane precursor; 3.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 30, 2023
    Inventors: Barry J. Summey, Takahiko Kondo, William John Mason, Kang Karen Xiao, Robert Moran, Jeffrey G. Poley, Brian R. Stepp, Kristoffer K. Stokes, Xiaomin Zhang
  • Patent number: 11607856
    Abstract: A microporous membrane wipe and a method of using such microporous membrane wipe are disclosed. The microporous membrane wipe may be uniaxially or biaxially oriented microporous membrane. The uniaxially or biaxially oriented microporous membrane may be made from one or more block and/or impact copolymers of polyethylene and/or polypropylene. A method of using such a microporous membrane wipe for skin oil blotting is also disclosed. Further disclosed is a method of using such a microporous membrane wipe for cleaning a surface for the removal of fingerprints, smudges and the like, where such surfaces may include, for example, eyeglasses, electronics, cell phones, displays, optical devices, camera lenses, microscope lenses and other precision optics, and/or the like.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: March 21, 2023
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Karl F. Humiston, Changqing Wang Adams, William John Mason
  • Patent number: 11569549
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 31, 2023
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20210126319
    Abstract: This application is directed to new and/or improved MD and/or TD stretched and optionally calendered membranes, separators, base films, microporous membranes, battery separators including said separator, base film or membrane, batteries including said separator, and/or methods for making and/or using such membranes, separators, base films, microporous membranes, battery separators and/or batteries. For example, new and/or improved methods for making microporous membranes, and battery separators including the same, that have a better balance of desirable properties than prior microporous membranes and battery separators. The methods disclosed herein comprise the following steps: 1.) obtaining a non-porous membrane precursor; 2.) forming a porous biaxially-stretched membrane precursor from the non-porous membrane precursor; 3.
    Type: Application
    Filed: May 24, 2018
    Publication date: April 29, 2021
    Inventors: Barry J. Summey, Takahiko Kondo, William John Mason, Kang Karen Xiao, Robert Moran, Jeffrey G. Poley, Brian R. Stepp, Kristoffer K. Stokes, Xiaomin Zhang
  • Publication number: 20210036293
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: September 14, 2020
    Publication date: February 4, 2021
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Patent number: 10777800
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 15, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20170084898
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 23, 2017
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20150107042
    Abstract: A microporous membrane wipe and a method of using such microporous membrane wipe are disclosed. The microporous membrane wipe may be uniaxially or biaxially oriented microporous membrane. The uniaxially or biaxially oriented microporous membrane may be made from one or more block and/or impact copolymers of polyethylene and/or polypropylene. A method of using such a microporous membrane wipe for skin oil blotting is also disclosed. Further disclosed is a method of using such a microporous membrane wipe for cleaning a surface for the removal of fingerprints, smudges and the like, where such surfaces may include, for example, eyeglasses, electronics, cell phones, displays, optical devices, camera lenses, microscope lenses and other precision optics, and/or the like.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 23, 2015
    Inventors: Kristoffer K. Stokes, Karl F. Humiston, Changqing Wang Adams, William John Mason