Patents by Inventor William K. Bischel

William K. Bischel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10852137
    Abstract: A waveguide optical gyroscope includes a multilayer waveguide rotation sensor fabricated on a substrate. The multilayer waveguide rotation sensor includes one or more overlaying non-intersecting, spiraling coils that are vertically separated to reduce or eliminate optical cross coupling. The waveguides are optically coupled by a vertical waveguide and are optically coupled to the other components of the optical gyroscope, including a light source and detector, which may be integrated or fabricated on the substrate. A lithium niobate phase modulator chip may be disposed on the substrate and optically coupled to the waveguides in the multilayer waveguide rotation sensor. The multilayer waveguide rotation sensor enables a small cross section for the guiding channels thereby achieving a high coil density in a small volume.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 1, 2020
    Assignee: Gener8, LLC
    Inventors: William K. Bischel, Lothar A. Reichertz
  • Publication number: 20190101392
    Abstract: A waveguide optical gyroscope includes a multilayer waveguide rotation sensor fabricated on a substrate. The multilayer waveguide rotation sensor includes one or more overlaying non-intersecting, spiraling coils that are vertically separated to reduce or eliminate optical cross coupling. The waveguides are optically coupled by a vertical waveguide and are optically coupled to the other components of the optical gyroscope, including a light source and detector, which may be integrated or fabricated on the substrate. A lithium niobate phase modulator chip may be disposed on the substrate and optically coupled to the waveguides in the multilayer waveguide rotation sensor. The multilayer waveguide rotation sensor enables a small cross section for the guiding channels thereby achieving a high coil density in a small volume.
    Type: Application
    Filed: September 26, 2018
    Publication date: April 4, 2019
    Inventors: William K. Bischel, Lothar A. Reichertz
  • Patent number: 7653109
    Abstract: An optical assembly, such as a multiple output diode laser pump source for EDFAs, is formed by pressing an optical array emitter chip against a standoff structure protruding from a submount such that the emitter chip deforms to match the curvature of the standoff structure. An IO chip is also juxtaposed against the standoff structure such that its optical receivers can receive optical energy from the emitter chip. The IO chip can provide various optical functions, and then provide an optical array output for coupling into an optical fiber array. The standoff structure preferably contacts the emitter chip over an aggregate contact area much smaller than the area by which the emitter chip overlaps the submount. The materials used for bonding the emitter chip and the IO chip to the submount are disposed in the recesses between standoffs and not on the contact surfaces of the standoff structure.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: January 26, 2010
    Assignee: Gemfire Corporation
    Inventors: William K. Bischel, David K. Wagner, Harald Guenther, Simon J. Field, Markus P. Hehlen, Richard B. Tompane, Andrew T. Ryan, C. Geoffrey Fanning, Jim W. Li, Nina D. Morozova
  • Patent number: 7471856
    Abstract: An optical link includes a polymer waveguide having a top cladding layer, a core polymer layer, and a bottom cladding layer, supported by a substrate, with mirrors and optical vias. The core polymer layer includes a polymer material having a nanoparticle filler with a particle size of less than one tenth the shortest wavelength of interest for the optical link. The optical links comprise individual, multiple or massively parallel channels in single or multilayer networks.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: December 30, 2008
    Assignees: Dow Corning Corporation, Gemfire Corporation
    Inventors: Jon Degroot, Jr., Shedric Glover, William K. Bischel, Mark J. Dyer
  • Patent number: 7263247
    Abstract: An integrated isolator array is provided having a plurality of waveguides fabricated in a planar optical substrate, each waveguide having input and output sections. An isolator subassembly is received within a transverse trench formed in the substrate between the input and output sections such that it intersects the optical paths of the waveguides. The isolator subassembly, which may consist of layers of Faraday rotator material sandwiched between layers of birefringent crystal material, permits the forward passage of light from the input sections to the output sections of the waveguides while preventing the backward passage of light from the output to the input sections. Each waveguide input section is preferably adapted with a mode-expanding input taper to collimate light propagating through the waveguide.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: August 28, 2007
    Assignee: Gemfire Corporation
    Inventors: Markus P. Hehlen, William K. Bischel
  • Patent number: 7235150
    Abstract: An optical assembly, such as a multiple output diode laser pump source for EDFAs, is formed by pressing an optical array emitter chip against a standoff structure protruding from a submount such that the emitter chip deforms to match the curvature of the standoff structure. An IO chip is also juxtaposed against the standoff structure such that its optical receivers can receive optical energy from the emitter chip. The IO chip can provide various optical functions, and then provide an optical array output for coupling into an optical fiber array. The standoff structure preferably contacts the emitter chip over an aggregate contact area much smaller than the area by which the emitter chip overlaps the submount. The materials used for bonding the emitter chip and the IO chip to the submount are disposed in the recesses between standoffs and not on the contact surfaces of the standoff structure.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 26, 2007
    Assignee: Gemfire Corporation
    Inventors: William K. Bischel, David K. Wagner, Harald Guenther, Simon J. Field, Markus P. Hehlen, Richard B. Tompane, Andrew T. Ryan, C. Geoffrey Fanning, Jim W. Li, Nina D. Morozova
  • Patent number: 7171064
    Abstract: A thermo-optic switch is operated in a novel near-impulse mode in which the drive pulse width is shorter than twice the diffusion time of the switch. The drive pulse width is less than the rise time of the steady-state optical response and also less than the rise time of the deflection efficiency response to the applied drive pulse. The drive pulse can further include a sustaining segment following the initial short pulse segment, if it is desired to maintain the switch in an ON state for a longer period of time. A number of additional techniques are described for further reducing the response time of the switch. An array of thermo-optic switches operated in this manner can form a display which, due to the fast individual switch rise times, can operate at an overall fast refresh rate.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: January 30, 2007
    Inventors: Michael J. Brinkman, William K. Bischel, Tony Kowalczyk, David R. Main, Lee L. Huang
  • Patent number: 6856752
    Abstract: A device for variable attenuation of an optical channel includes an elongated core surrounded by a cladding. Optical energy propagating along the longitudinal axis of the core is normally confined thereto by the difference in refractive indices between the core and cladding. The thermo-optic coefficients of the core and cladding are closely matched such that waveguide confinement is substantially invariant with respect to ambient temperature. The device further includes a thermal source arranged above the core. The thermal source is operable to generate a temperature gradient of controllable magnitude along a vertical axis extending through the core. The temperature gradient causes reduction of the local refractive index within the core relative to surrounding regions of the cladding such that a portion of the optical energy is deflected away from the thermal source and extracted from the core.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: February 15, 2005
    Inventors: William K. Bischel, Tony C. Kowalczyk
  • Publication number: 20040105611
    Abstract: An optical assembly, such as a multiple output diode laser pump source for EDFAs, is formed by pressing an optical array emitter chip against a standoff structure protruding from a submount such that the emitter chip deforms to match the curvature of the standoff structure. An IO chip is also juxtaposed against the standoff structure such that its optical receivers can receive optical energy from the emitter chip. The IO chip can provide various optical functions, and then provide an optical array output for coupling into an optical fiber array. The standoff structure preferably contacts the emitter chip over an aggregate contact area much smaller than the area by which the emitter chip overlaps the submount. The materials used for bonding the emitter chip and the IO chip to the submount are disposed in the recesses between standoffs and not on the contact surfaces of the standoff structure.
    Type: Application
    Filed: July 9, 2003
    Publication date: June 3, 2004
    Applicant: Gemfire Corporation
    Inventors: William K. Bischel, David K. Wagner, Harald Guenther, Simon J. Field, Markus P. Hehlen, Richard B. Tompane, Andrew T. Ryan, C. Geoffrey Fanning, Jim Weijian Li, Nina D. Morozova
  • Publication number: 20040091195
    Abstract: A device for variable attenuation of an optical channel includes an elongated core surrounded by a cladding. Optical energy propagating along the longitudinal axis of the core is normally confined thereto by the difference in refractive indices between the core and cladding. The thermo-optic coefficients of the core and cladding are closely matched such that waveguide confinement is substantially invariant with respect to ambient temperature. The device further includes a thermal source arranged above the core. The thermal source is operable to generate a temperature gradient of controllable magnitude along a vertical axis extending through the core. The temperature gradient causes reduction of the local refractive index within the core relative to surrounding regions of the cladding such that a portion of the optical energy is deflected away from the thermal source and extracted from the core.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 13, 2004
    Applicant: Gemfire Corporation
    Inventors: William K. Bischel, Tony C. Kowalczyk
  • Patent number: 6724968
    Abstract: An optical structure is fabricated by forming an active layer including a photodefinable material on a substrate or on another underlying layer, forming an upper layer above the active layer, and then patterning the active layer by selective application of radiation through the upper layer. The upper layer is substantially transparent to radiation of the type required to activate the photodefinable material in the active layer.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: April 20, 2004
    Assignee: Gemfire Corporation
    Inventors: Hilary S. Lackritz, William K. Bischel, Tony C. Kowalczyk, Simon J. Field, Travis P. S. Thoms, Yeong-Cheng Lee
  • Publication number: 20030206683
    Abstract: A thermo-optic switch is operated in a novel near-impulse mode in which the drive pulse width is shorter than twice the diffusion time of the switch. The drive pulse width is less than the rise time of the steady-state optical response and also less than the rise time of the deflection efficiency response to the applied drive pulse. The drive pulse can further include a sustaining segment following the initial short pulse segment, if it is desired to maintain the switch in an ON state for a longer period of time. A number of additional techniques are described for further reducing the response time of the switch. An array of thermo-optic switches operated in this manner can form a display which, due to the fast individual switch rise times, can operate at an overall fast refresh rate.
    Type: Application
    Filed: May 5, 2003
    Publication date: November 6, 2003
    Applicant: Gemfire Corporation
    Inventors: Michael J. Brinkman, William K. Bischel, Tony Kowalczyk, David R. Main, Lee L. Huang
  • Publication number: 20030133668
    Abstract: Roughly described, a submount has a standoff structure protruding from its surface. An optical component is pressed against the standoff structure until tilt and planar non-uniformities are removed, and then bonded to the submount using an adhesive placed in the wells between the protrusions of the standoff structure. The standoff structure preferably has a total surface area contacting the optical component which is much smaller than the area by which the optical components overlap the submount. The optical component mounted in this manner can be an optical array component (including an optical fiber array), or a component having only a single optical port. A second optical component can be attached to the submount in the same manner, greatly simplifying the vertical alignment problems between the two components.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 17, 2003
    Inventors: David K. Wagner, Harald Guenther, William K. Bischel, Jim Weijian Li, Nina D. Morozova
  • Patent number: 6580842
    Abstract: A circulator array is constructed in a planar substrate by forming a plurality of waveguide pair structures, each waveguide pair structure having first and second sections respectively coupled by first and second polarization multiplexers. A nonreciprocal polarization rotation element is positioned in the optical paths of the waveguide pair structures and is configured to rotate the polarization of light passing from the second sections of the waveguides to the first sections while leaving unchanged the polarization of light passing from the first sections to the second sections, such that optical signals received at one port of the circulator structure are routed along a predetermined path to another port of the circulator structure.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: June 17, 2003
    Inventors: Markus P. Hehlen, William K. Bischel
  • Publication number: 20030108273
    Abstract: In a first state of an optical switch, a structure in the switch confines an optical mode to propagate along a first, unswitched path. The switch is switched into a second state by reducing the refractive index along the first path, or by increasing the refractive index of a region of the switch outside but adjacent to the first path, until the index within the first path is lower, preferably substantially lower, than that of the adjacent region. This creates an anti-waveguiding section in which light is forced to diverge from the unswitched path both by diffraction and refraction. The refractive index change is produced thermo-optically or electro-optically, for example. In a symmetric planar embodiment, upon actuation, light escapes from the confinement region into two beams deflected symmetrically in lateral directions while remaining vertically confined.
    Type: Application
    Filed: October 18, 2002
    Publication date: June 12, 2003
    Applicant: Gemfire Corporation
    Inventors: Tony C. Kowalczyk, William K. Bischel, Michael J. Brinkman, Stanley Timothy Lau
  • Patent number: 6560387
    Abstract: A reflective doped fiber amplifier array utilizes an integrated circulator array to effect routing of optical signals. The integrated circulator array has a plurality of waveguide pairs coupled by polarization multiplexers formed in a planar substrate, and a nonreciprocal polarization rotation element positioned between sections of the waveguide pairs. Pump light is coupled into and out of the doped fibers by wavelength-selective reflectors.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: May 6, 2003
    Inventors: Markus P. Hehlen, William K. Bischel
  • Patent number: 6556734
    Abstract: An optical device includes at least a first and second electrical conductors. At least one optical layer overlies at least a portion of the first and second electrical conductors. An applicator is positioned proximate to said at least one optical layer to selectively redirect light from the optical layer. An electrical coupling path between said at least one applicator and one of said first or second electrical conductors, at least a portion of the coupling path traversing said at least one optical layer. At least one optical waveguide may be formed in an optical layer above said electrical conductors. A feature is located to receive light redirected by the applicator and at least one electrical coupling path, which may be included in said feature, couples the applicator and at least one of said plurality of conductors. In a further aspect, a method for manufacturing an optical device is disclosed.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: April 29, 2003
    Assignee: Gemfire Corporation
    Inventors: William K. Bischel, David A. G. Deacon, Michael J. Brinkman, Simon J. Field, Linda A. Whittelsey
  • Patent number: 6522793
    Abstract: An electro-optic modulator is provided which comprises an electro-optic substrate, a Mach-Zehnder Interferometer optical waveguide structure, and at least two electrodes. In an embodiment of the invention, the Mach-Zehnder Interferometer optical waveguide structure has a mode transition section for reducing the optical mode size and bringing the optical mode center closer to the upper surface of the electro-optic substrate. In another embodiment, there is a laterally recessed adhesion layer disposed between the electrodes and the electro-optic substrate. The recess in this adhesion layer minimizes the dissipative effect that the adhesion layer would ordinarily have on the propagation of RF energy along the electrode. In yet another embodiment, a dual drive arrangement is described for driving an electro-optic modulator. Finally, an integrated modulator array is described.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: February 18, 2003
    Inventors: Andrei Szilagyi, William K. Bischel, Konstantin P. Petrov
  • Patent number: 6522794
    Abstract: A flat panel display is based on a new switching technology for routing laser light among a set of optical waveguides and coupling that light toward the viewer. The switching technology is based on poled electro-optical structures. The display technology is versatile enough to cover application areas spanning the range from miniature high resolution computer displays to large screen displays for high definition television formats. The invention combines the high brightness and power efficiency inherent in visible semiconductor diode laser sources with a new waveguide electro-optical switching technology to form a dense two-dimensional addressable array of high brightness light emissive pixels.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: February 18, 2003
    Assignee: Gemfire Corporation
    Inventors: William K. Bischel, Michael J. Brinkman, David A. G. Deacon, Edward J. DeWath, Mark J. Dyer, Simon J. Field
  • Patent number: 6507681
    Abstract: In a first state of an optical switch, a structure in the switch confines an optical mode to propagate along a first, unswitched path. The switch is switched into a second state by reducing the refractive index along the first path, or by increasing the refractive index of a region of the switch outside but adjacent to the first path, until the index within the first path is lower, preferably substantially lower, than that of the adjacent region. This creates an anti-waveguiding section in which light is forced to diverge from the unswitched path both by diffraction and refraction. The refractive index change is produced thermo-optically or electro-optically, for example. In a symmetric planar embodiment, upon actuation, light escapes from the confinement region into two beams deflected symmetrically in lateral directions while remaining vertically confined.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: January 14, 2003
    Assignee: Gemfire Corporation
    Inventors: Tony C. Kowalczyk, William K. Bischel, Michael J. Brinkman, Stanley Timothy Lau