Patents by Inventor William K. Loizides

William K. Loizides has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7078712
    Abstract: The present invention is directed to in-situ detection of particles and other such features in an ion implantation system during implantation operations to avoid such additional monitoring tool steps otherwise expended before and/or after implantation, for example. One or more such systems are revealed for detecting scattered light from particles on one or more semiconductor wafers illuminated by a light source (e.g., laser beam). The system comprises an ion implanter having a laser for illumination of a spot on the wafer and a pair of detectors (e.g., PMT or photodiode) rotationally opposite from the ion implantation operations. A wafer transport holds a wafer or wafers for translational scanning under the fixed laser spot. A computer analyzes the intensity of the scattered light detected from the illuminated wafer (workpiece), and may also map the light detected to a unique position.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 18, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Alexander S. Perel, Lyudmila Stone, William K. Loizides, Victor M. Benveniste
  • Patent number: 6958481
    Abstract: An ion source (50) for an ion implanter is provided, comprising a remotely located vaporizer (51) and an ionizer (53) connected to the vaporizer by a feed tube (62). The vaporizer comprises a sublimator (52) for receiving a solid source material such as decaborane and sublimating (vaporizing) the decaborane. A heating mechanism is provided for heating the sublimator, and the feed tube connecting the sublimator to the ionizer, to maintain a suitable temperature for the vaporized decaborane. The ionizer (53) comprises a body (96) having an inlet (119) for receiving the vaporized decaborane; an ionization chamber (108) in which the vaporized decaborane may be ionized by an energy-emitting element (110) to create a plasma; and an exit aperture (126) for extracting an ion beam comprised of the plasma. A cooling mechanism (100, 104) is provided for lowering the temperature of walls (128) of the ionization chamber (108) (e.g., to below 350° C.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: October 25, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventors: Thomas N. Horsky, Alexander S. Perel, William K. Loizides
  • Publication number: 20010054699
    Abstract: An ion source (50) for an ion implanter is provided, comprising a remotely located vaporizer (51) and an ionizer (53) connected to the vaporizer by a feed tube (62). The vaporizer comprises a sublimator (52) for receiving a solid source material such as decaborane and sublimating (vaporizing) the decaborane. A heating mechanism is provided for heating the sublimator, and the feed tube connecting the sublimator to the ionizer, to maintain a suitable temperature for the vaporized decaborane. The ionizer (53) comprises a body (96) having an inlet (119) for receiving the vaporized decaborane; an ionization chamber (108) in which the vaporized decaborane may be ionized by an energy-emitting element (110) to create a plasma; and an exit aperture (126) for extracting an ion beam comprised of the plasma. A cooling mechanism (100, 104) is provided for lowering the temperature of walls (128) of the ionization chamber (108) (e.g., to below 350° C.
    Type: Application
    Filed: August 22, 2001
    Publication date: December 27, 2001
    Inventors: Thomas N. Horsky, Alexander S. Perel, William K. Loizides
  • Patent number: 6288403
    Abstract: An ion source (50) for an ion implanter is provided, comprising a remotely located vaporizer (51) and an ionizer (53) connected to the vaporizer by a feed tube (62). The vaporizer comprises a sublimator (52) for receiving a solid source material such as decaborane and sublimating (vaporizing) the decaborane. A heating mechanism is provided for heating the sublimator, and the feed tube connecting the sublimator to the ionizer, to maintain a suitable temperature for the vaporized decaborane. The ionizer (53) comprises a body (96) having an inlet (119) for receiving the vaporized decaborane; an ionization chamber (108) in which the vaporized decaborane may be ionized by an energy-emitting element (110) to create a plasma; and an exit aperture (126) for extracting an ion beam comprised of the plasma. A cooling mechanism (100, 104) is provided for lowering the temperature of walls (128) of the ionization chamber (108) (e.g., to below 350° C.
    Type: Grant
    Filed: October 11, 1999
    Date of Patent: September 11, 2001
    Assignee: Axcelis Technologies, Inc.
    Inventors: Thomas N. Horsky, Alexander S. Perel, William K. Loizides